138,657 research outputs found

    Intelligent Interactive Beam Training for Millimeter Wave Communications

    Get PDF
    Millimeter wave communications, equipped with large-scale antenna arrays, are able to provide Gbps data by exploring abundant spectrum resources. However, the use of a large number of antennas along with narrow beams causes a large overhead in obtaining channel state information (CSI) via beam training, especially for fast-changing channels. To reduce beam training overhead, in this paper we develop an interactive learning design paradigm (ILDP) that makes full use of domain knowledge of wireless communications (WCs) and adaptive learning ability of machine learning (ML). Specifically, the ILDP is fulfilled via deep reinforcement learning (DRL), which yields DRL-ILDP, and consists of communication model (CM) module and adaptive learning (AL) module, which work in an interactive manner. Then, we exploit the DRL-ILDP to design efficient beam training algorithms for both multi-user and user-centric cooperative communications. The proposed DRL-ILDP based algorithms enjoy three folds of advantages. Firstly, ILDP takes full advantages of the existing WC models and methods. Secondly, ILDP integrates powerful ML elements, which facilitates extracting interested statistical and probabilistic information from environments. Thirdly, via the interaction between the CM and AL modules, the algorithms are able to collect samples and extract information in real-time and sufficiently adapt to the ever-changing environments. Simulation results demonstrate the effectiveness and superiority of the designed algorithms

    Emergent Quantized Communication

    Full text link
    The field of emergent communication aims to understand the characteristics of communication as it emerges from artificial agents solving tasks that require information exchange. Communication with discrete messages is considered a desired characteristic, for both scientific and applied reasons. However, training a multi-agent system with discrete communication is not straightforward, requiring either reinforcement learning algorithms or relaxing the discreteness requirement via a continuous approximation such as the Gumbel-softmax. Both these solutions result in poor performance compared to fully continuous communication. In this work, we propose an alternative approach to achieve discrete communication -- quantization of communicated messages. Using message quantization allows us to train the model end-to-end, achieving superior performance in multiple setups. Moreover, quantization is a natural framework that runs the gamut from continuous to discrete communication. Thus, it sets the ground for a broader view of multi-agent communication in the deep learning era

    Optimal Complexity in Non-Convex Decentralized Learning over Time-Varying Networks

    Full text link
    Decentralized optimization with time-varying networks is an emerging paradigm in machine learning. It saves remarkable communication overhead in large-scale deep training and is more robust in wireless scenarios especially when nodes are moving. Federated learning can also be regarded as decentralized optimization with time-varying communication patterns alternating between global averaging and local updates. While numerous studies exist to clarify its theoretical limits and develop efficient algorithms, it remains unclear what the optimal complexity is for non-convex decentralized stochastic optimization over time-varying networks. The main difficulties lie in how to gauge the effectiveness when transmitting messages between two nodes via time-varying communications, and how to establish the lower bound when the network size is fixed (which is a prerequisite in stochastic optimization). This paper resolves these challenges and establish the first lower bound complexity. We also develop a new decentralized algorithm to nearly attain the lower bound, showing the tightness of the lower bound and the optimality of our algorithm.Comment: Accepted by 14th Annual Workshop on Optimization for Machine Learning. arXiv admin note: text overlap with arXiv:2210.0786

    Distributed Training Large-Scale Deep Architectures

    Full text link
    Scale of data and scale of computation infrastructures together enable the current deep learning renaissance. However, training large-scale deep architectures demands both algorithmic improvement and careful system configuration. In this paper, we focus on employing the system approach to speed up large-scale training. Via lessons learned from our routine benchmarking effort, we first identify bottlenecks and overheads that hinter data parallelism. We then devise guidelines that help practitioners to configure an effective system and fine-tune parameters to achieve desired speedup. Specifically, we develop a procedure for setting minibatch size and choosing computation algorithms. We also derive lemmas for determining the quantity of key components such as the number of GPUs and parameter servers. Experiments and examples show that these guidelines help effectively speed up large-scale deep learning training
    • …
    corecore