4,628 research outputs found

    JECC: Commonsense Reasoning Tasks Derived from Interactive Fictions

    Full text link
    Commonsense reasoning simulates the human ability to make presumptions about our physical world, and it is an essential cornerstone in building general AI systems. We propose a new commonsense reasoning dataset based on human's Interactive Fiction (IF) gameplay walkthroughs as human players demonstrate plentiful and diverse commonsense reasoning. The new dataset provides a natural mixture of various reasoning types and requires multi-hop reasoning. Moreover, the IF game-based construction procedure requires much less human interventions than previous ones. Experiments show that the introduced dataset is challenging to previous machine reading models with a significant 20% performance gap compared to human experts.Comment: arXiv admin note: text overlap with arXiv:2010.0978

    Advancing Transformer's Capabilities in Commonsense Reasoning

    Full text link
    Recent advances in general purpose pre-trained language models have shown great potential in commonsense reasoning. However, current works still perform poorly on standard commonsense reasoning benchmarks including the Com2Sense Dataset. We argue that this is due to a disconnect with current cutting-edge machine learning methods. In this work, we aim to bridge the gap by introducing current ML-based methods to improve general purpose pre-trained language models in the task of commonsense reasoning. Specifically, we experiment with and systematically evaluate methods including knowledge transfer, model ensemble, and introducing an additional pairwise contrastive objective. Our best model outperforms the strongest previous works by ~15\% absolute gains in Pairwise Accuracy and ~8.7\% absolute gains in Standard Accuracy

    CRoW: Benchmarking Commonsense Reasoning in Real-World Tasks

    Full text link
    Recent efforts in natural language processing (NLP) commonsense reasoning research have yielded a considerable number of new datasets and benchmarks. However, most of these datasets formulate commonsense reasoning challenges in artificial scenarios that are not reflective of the tasks which real-world NLP systems are designed to solve. In this work, we present CRoW, a manually-curated, multi-task benchmark that evaluates the ability of models to apply commonsense reasoning in the context of six real-world NLP tasks. CRoW is constructed using a multi-stage data collection pipeline that rewrites examples from existing datasets using commonsense-violating perturbations. We use CRoW to study how NLP systems perform across different dimensions of commonsense knowledge, such as physical, temporal, and social reasoning. We find a significant performance gap when NLP systems are evaluated on CRoW compared to humans, showcasing that commonsense reasoning is far from being solved in real-world task settings. We make our dataset and leaderboard available to the research community at https://github.com/mismayil/crow.Comment: 37 pages, camera-ready for EMNLP 202
    corecore