3,227 research outputs found

    Common transversals

    Get PDF
    AbstractGiven t families, each family consisting of s finite sets, we show that if the families “separate points” in a natural way, and if the union of all the sets in all the families contains more than (s + 1)t − st−1 − 1 elements, then a common transversal of the t families exists. In case each family is a covering family, the bound is st − st−1. Both of these bounds are best possible. This work extends recent work of Longyear [2]

    Common transversals and tangents to two lines and two quadrics in P^3

    Get PDF
    We solve the following geometric problem, which arises in several three-dimensional applications in computational geometry: For which arrangements of two lines and two spheres in R^3 are there infinitely many lines simultaneously transversal to the two lines and tangent to the two spheres? We also treat a generalization of this problem to projective quadrics: Replacing the spheres in R^3 by quadrics in projective space P^3, and fixing the lines and one general quadric, we give the following complete geometric description of the set of (second) quadrics for which the 2 lines and 2 quadrics have infinitely many transversals and tangents: In the nine-dimensional projective space P^9 of quadrics, this is a curve of degree 24 consisting of 12 plane conics, a remarkably reducible variety.Comment: 26 pages, 9 .eps figures, web page with more pictures and and archive of computations: http://www.math.umass.edu/~sottile/pages/2l2s

    Line transversals to disjoint balls

    Get PDF
    We prove that the set of directions of lines intersecting three disjoint balls in R3R^3 in a given order is a strictly convex subset of S2S^2. We then generalize this result to nn disjoint balls in RdR^d. As a consequence, we can improve upon several old and new results on line transversals to disjoint balls in arbitrary dimension, such as bounds on the number of connected components and Helly-type theorems.Comment: 21 pages, includes figure

    Geometric Permutations of Non-Overlapping Unit Balls Revisited

    Full text link
    Given four congruent balls A,B,C,DA, B, C, D in RdR^{d} that have disjoint interior and admit a line that intersects them in the order ABCDABCD, we show that the distance between the centers of consecutive balls is smaller than the distance between the centers of AA and DD. This allows us to give a new short proof that nn interior-disjoint congruent balls admit at most three geometric permutations, two if n7n\ge 7. We also make a conjecture that would imply that n4n\geq 4 such balls admit at most two geometric permutations, and show that if the conjecture is false, then there is a counter-example of a highly degenerate nature
    corecore