JOURNAL OF COMBINATORIAL THEORY (A) 21, 80-85 (1976)

Common Transversals

T. C. Brown*

Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, V5A 1S6

Communicated by P. Erdos

Received October 10, 1975

Given t families, each family consisting of s finite sets, we show that if the families "separate points" in a natural way, and if the union of all the sets in all the families contains more than $(s + 1)^t - s^{t-1} - 1$ elements, then a common transversal of the t families exists. In case each family is a covering family, the bound is $s^t - s^{t-1}$. Both of these bounds are best possible. This work extends recent work of Longyear [2].

1. INTRODUCTION AND STATEMENT OF RESULTS

Throughout this paper, the symbol \mathscr{F} will always denote a family of t families of sets, each of the t families consisting of s finite, but not necessarily distinct or nonempty, sets. The symbol Ω will always denote the union of all of the sets contained in all of the t families. Thus $\mathscr{F} = (F_1, F_2, ..., F_t)$, where for each $j, 1 \leq j \leq t, F_j = (F_j(1), F_j(2), ..., F_j(s))$ is a family of s (finite, but not necessarily distinct or nonempty) sets, and $\Omega = \bigcup \{F_j(i) \mid 1 \leq j \leq t, 1 \leq i \leq s\}$ (or more briefly, $\Omega = \bigcup \bigcup \mathscr{F}$). We always assume that \mathscr{F} separates points of Ω in the following sense. Letting $F_j(0) = \Omega \setminus \bigcup F_j$, $1 \leq j \leq t$, we require

$$\left| \bigcap \{F_j(a_j) \mid 1 \leqslant j \leqslant t\} \right| \leqslant 1$$

for every *t*-tuple $(a_1, a_2, ..., a_t)$, where $0 \le a_j \le s$, $1 \le j \le t$. Note that this immediately implies $|\Omega| \le (s+1)^t - 1$ (since $|\bigcap \{F_j(0) \mid 1 \le j \le t\}| = 0$), and that in the case where each F_j covers Ω (so that $F_j(0) = \emptyset$) we have $|\Omega| \le s^t$.

Recall that the set T is a *transversal* (sometimes called a *system of distinct* representatives or SDR) of the family F_j if there is a bijection $\varphi: T \rightarrow \varphi$

* Partially supported by Canadian NRC Grant No. A-3982.

Copyright © 1976 by Academic Press, Inc. All rights of reproduction in any form reserved. {1, 2,..., s} such that $x \in F_j(\varphi(x))$ for all $x \in T$. The set T is a common transversal of F_1 , F_2 ,..., F_t if T is simultaneously a transversal of each F_j , $1 \leq j \leq t$.)

In this paper the following results are proved, which extend recent results of Judith Q. Longyear [2]. Longyear proved, among other things, Theorem 1(b) below in the case where each family F_i is assumed to consist of mutually disjoint sets. Theorem 1(b) can be obtained as a corollary to her result. We give an alternative proof.

THEOREM 1. Let \mathscr{F} and Ω be as in the first paragraph of this paper, and assume further that each family F_j covers Ω , that is, $\bigcup F_j = \Omega$, $1 \leq j \leq t$.

(a) If $|\Omega| > s^t - s^{t-1}$ then each family F_j has a transversal, and $s^t - s^{t-1}$ is best possible.

(b) If $|\Omega| > s^t - s^{t-1}$ then a common transversal of $F_1, F_2, ..., F_t$ exists, and $s^t - s^{t-1}$ is best possible.

THEOREM 2. Let \mathscr{F} and Ω be as in the first paragraph of this paper.

(a) If $|\Omega| > (s+1)^t - (s+1)^{t-1} - 1$ then each family F_j has a transversal, and $(s+1)^t - (s+1)^{t-1} - 1$ is best possible.

(b) If $|\Omega| > (s + 1)^t - s^{t-1} - 1$ then a common transversal of $F_1, F_2, ..., F_t$ exists, and $(s + 1)^t - s^{t-1} - 1$ is best possible.

2. PROOFS

Let us show first of all that the bounds given in Theorems 1 and 2 are best possible.

For Theorem 1(a) and Theorem 1(b) let

$$\Omega = \{(a_1, a_2, ..., a_t) \mid 1 \leqslant a_j \leqslant s, 1 \leqslant j \leqslant t-1, 1 \leqslant a_t \leqslant s-1\}.$$

For all $j, i, 1 \leq j \leq t, 1 \leq i \leq s$, let $F_j(i) = \{\omega \in \Omega \mid \text{the } j\text{th coordinate of } \omega \text{ equals } i\}$. Note that $F_i(s) = \emptyset$, so that F_t has no transversal. It is easy to see that $|\Omega| = s^t - s^{t-1}$, each F_j covers Ω , $1 \leq j \leq t$, and $\mathscr{F} = (F_1, F_2, ..., F_i)$ separates points.

For Theorem 2(a), we let

$$egin{aligned} \Omega = \{(a_1\,,\,a_2\,,...,\,a_t)\,|\,0\leqslant a_i\leqslant s,\,1\leqslant j\leqslant t-1,\ 0\leqslant a_t\leqslant s-1\}ackslash\{(0,\,0,...,\,0)\}. \end{aligned}$$

For all $j, i, 1 \leq j \leq t, 1 \leq i \leq s$, let

 $F_i(i) = \{ \omega \in \Omega \mid \text{the } j\text{th coordinate of } \omega \text{ equals } i \}.$

Again $F_t(s) = \emptyset$ so F_t has no transversal, and it is easy to see that $|\Omega| = (s+1)^t - (s+1)^{t-1} - 1, \Omega = \bigcup \bigcup \mathscr{F}$, and $\mathscr{F} = (F_1, F_2, ..., F_t)$ separates points.

For Theorem 2(b), let Ω be the set of all *t*-tuples $(a_1, a_2, ..., a_t)$, $0 \leq a_j \leq s, 1 \leq j \leq t$, excluding the set $(\{(a_1, a_2, ..., a_t) \mid 1 \leq a_j \leq s, 1 \leq j \leq t-1, a_t = s\} \cup \{(0, 0, ..., 0)\})$. For all $j, i, 1 \leq j \leq t, 1 \leq i \leq s$, let

 $F_{i}(i) = \{\omega \in \Omega \mid \text{the } j\text{th coordinate of } \omega \text{ equals } i\}.$

Then any element ω of $F_t(s)$ must have its j_0 th coordinate equal to 0 for some $j_0 \neq t$, and hence ω cannot represent any set in the family F_{j_0} , therefore ω cannot belong to any common transversal of $F_1, F_2, ..., F_t$. Therefore no common transversal exists. Again it is easy to see that $|\Omega| = (s+1)^t - s^{t-1} - 1, \Omega = \bigcup \bigcup \mathscr{F}$, and $\mathscr{F} = (F_1, F_2, ..., F_t)$ separates points.

Throughout the remaining proofs, the following notation will be used. It is therefore fixed once and for all. For $t \ge 2$, let X be the set of all (t-1)-tuples $(a_1, a_2, ..., a_{t-1})$, where each a_j , $1 \le j \le t-1$, satisfies $1 \le a_j \le s$. Note that $|X| = s^{t-1}$. For each $x = (a_1, a_2, ..., a_{t-1}) \in X$, we denote by f(x) the set $\bigcap \{F_j(a_j) \mid 1 \le j \le t-1\}$. Then since \mathscr{F} distinguishes points and each F_j covers Ω we have $|f(x) \cap F_t(i)| \le 1$ for all $x \in X$ and all $i, 1 \le i \le s$, and $\Omega = \bigcup \{f(x) \mid x \in X\}$.

Proof of Theorem 1(a). The case t = 1 follows from the various definitions, so we assume $t \ge 2$, and without loss of generality we restrict our attention to F_t . We shall make use of the classical result of P. Hall [1] according to which F_t has a transversal if and only if $|\bigcup \{F_t(i) \mid i \in I\}| \ge |I|$ for all $I \subset \{1, 2, ..., s\}$. Suppose that F_t does not have a transversal, and that $|F_t(i_1) \cup F_t(i_2) \cup \cdots \cup F_t(i_k)| < k$, where k is as small as possible. Then $F_t(i_k) \subset F_t(i_1) \cup F_t(i_2) \cup \cdots \cup F_t(i_{k-1})$ ($F_t(i_k) = \emptyset$ if k = 1), hence $\Omega = \bigcup \{F_t(i) \mid 1 \le i \le s, i \ne i_k\}$. Then

$$|\Omega| = \left| \left(\bigcup \{f(x) \mid x \in X\} \right) \cap \left(\bigcup \{F_t(i) \mid 1 \leqslant i \leqslant s, i \neq i_k\} \right) \right|$$
$$= \left| \bigcup \{f(x) \cap F_t(i) \mid x \in X, 1 \leqslant i \leqslant s, i \neq i_k\} \right|$$
$$\leqslant |\{(x, i) \mid x \in X, 1 \leqslant i \leqslant s, i \neq i_k\}|$$
$$= s^{t-1}(s-1) = s^t - s^{t-1},$$

contrary to the hypothesis of the Theorem. Hence F_t , and similarly each F_j , has a transversal.

Proof of Theorem 1(b). Since the family $F_t = (F_t(1), F_t(2), ..., F_t(s))$ has a transversal (by Theorem 1(a)) and covers Ω , we can replace F_t by a *partition* G = (G(1), G(2), ..., G(s)) such that $G(i) \subset F_t(i)$ for all $i, 1 \leq i \leq s$. (The partition G can be constructed as follows. Let $\{\omega_1, \omega_2, ..., \omega_s\}$ be a transversal of F_t , where $\omega_t \in F_t(i), 1 \leq i \leq s$. Let

$$G(1) = F_t(1) \{ \omega_2, ..., \omega_s \},$$

$$G(2) = F_t(2) \setminus (G(1) \cup \{ \omega_3, ..., \omega_s \}),$$

$$G(3) = F_t(3) \setminus (G(1) \cup G(2) \cup \{ \omega_4, ..., \omega_s \}),$$

$$\vdots$$

$$G(s) = F_t(s) \setminus (G(1) \cup G(2) \cup \cdots \cup G(s-1)).$$

Then $\mathscr{F}' = (F_1, F_2, ..., F_{t-1}, G)$ distinguishes points, hence $|f(x) \cap G(i)| \leq 1$ for all $x \in X$ and all $i, 1 \leq i \leq s$, and any common transversal of $F_1, F_2, ..., F_{t-1}$, G is a common transversal of $F_1, F_2, ..., F_t$.

At this point we could in fact replace every F_j by a partition (since we know by Theorem 1(a) that every F_j has a transversal); however, it is not necessary, and so we do not.

We now demonstrate the existence of a common transversal of $F_1, F_2, ..., F_{t-1}, G$.

To this end we define a *diagonal* of X to be a subset D of X such that |D| = s and for each $j, 1 \le j \le t - 1$, the *j*th coordinates of the elements of D run through $\{1, 2, ..., s\}$ in some order. Note that whenever $D = \{x_1, x_2, ..., x_s\}$ is a diagonal, $\omega_k \in f(x_k), 1 \le k \le s$, and $\omega_1, \omega_2, ..., \omega_s$ are all distinct, then $\{\omega_1, \omega_2, ..., \omega_s\}$ is a common transversal of F_1 , $F_2, ..., F_{l-1}$.

Now we let \mathscr{D} be some fixed collection of *mutually disjoint* diagonals of X whose union is X, $X = \bigcup \mathscr{D}$. (The existence of \mathscr{D} can be shown by induction on t.)

Since $|X| = s^{t-1}$ and every diagonal has s elements, we have $|\mathcal{D}| = s^{t-2}$. For any diagonal D, let $f(D) = \bigcup \{f(x) \mid x \in D\}$. Then

$$\Omega = \bigcup \{ f(x) \mid x \in X \} = \bigcup \{ f(D) \mid D \in \mathscr{D} \}.$$

Now

$$|s^t - s^{t-1}| < |\Omega| \le \sum_{D \in \mathscr{D}} |f(D)| \le |\mathscr{D}| \max\{|f(D)| \mid D \in \mathscr{D}\},$$

hence $s^2 - s < \max\{|f(D)| \mid D \in \mathcal{D}\}$.

We now fix a diagonal D with $s^2 - s < |f(D)|$. Let $D = \{x_1, x_2, ..., x_s\}$, and define, for $1 \le i \le s$, $1 \le j \le s$,

$$e_{ij} = \begin{cases} 1 & \text{if } f(x_i) \cap G(j) \neq \emptyset \\ 0 & \text{otherwise.} \end{cases}$$

Then since $|f(x_i) \cap G(j)| \leq 1$ for all *i*, *j*, and *G* is a partition of Ω , the $s \times s$ 0-1 matrix (e_{ij}) contains exactly |f(D)|, and hence more than $s^2 - s$, 1's. Therefore there exist (as can be shown by induction on *s*) indices i_1j_1 , i_2j_2 ,..., i_sj_s such that $e_{i_1j_1} = e_{i_2j_2} = \cdots = e_{i_sj_s} = 1$ and $\{i_1, i_2, ..., i_s\} = \{j_1, j_2, ..., j_s\} = \{1, 2, ..., s\}.$

Now let $\{\omega_k\} = f(x_{i_k}\} \cap G(j_k), 1 \leq k \leq s$. Then since G is a partition, $\omega_1, \omega_2, ..., \omega_s$ are all distinct, and hence $\{\omega_1, \omega_2, ..., \omega_s\}$ is not only a transversal of G but is also (since $\{x_1, x_2, ..., x_s\}$ is a diagonal) a common transversal of $F_1, F_2, ..., F_{t-1}$. Therefore $\{\omega_1, \omega_2, ..., \omega_s\}$ is a common transversal of $F_1, F_2, ..., F_{t-1}$, G, and hence of $F_1, F_2, ..., F_t$.

This completes the proof of Theorem 1(b).

Proof of Theorem 2(a). Recall that for each $j, 1 \le j \le t, F_j(0)$ denotes the complement in Ω of the union of the family F_j , that is, $F_j(0) = \Omega \setminus \bigcup \{F_j(i) \mid 1 \le i \le s\}$. If now for each $j, 1 \le j \le t$, we let

$$G_j = (F_j(0), F_j(1), \dots, F_j(s)),$$

and let $\mathscr{G} = (G_1, G_2, ..., G_t)$, then \mathscr{G} separates points and each family G_j covers Ω , therefore we may proceed exactly as in the proof of Theorem 1(a), where now we have t families with s + 1 sets in each family. Furthermore, since we know that $\bigcap \{F_j(0) \mid 1 \leq j \leq t\} = \emptyset$ (this is so because $\bigcup \{F_j(i) \mid 1 \leq j \leq t, 1 \leq i \leq s\} = \Omega$), the last inequality in the proof of Theorem 1(a) can be replaced by

$$| \Omega | \leq |\{(x,i) | x \in X, 0 \leq i \leq s, i \neq i_k, (i, x) \neq (0, (0, 0, ..., 0))\}|$$

= $(s+1)^t - (s+1)^{t-1} - 1$.

This proves Theorem 2(a).

Proof of Theorem 2(b). For each $j, 1 \leq j \leq t$, let $\Omega_j = \bigcup F_j$, and let

$$\Omega_0 = \bigcap \{\Omega_j \mid 1 \leqslant j \leqslant t\}.$$

For each j, i, $1 \leq j \leq t$, $1 \leq i \leq s$, let $G_j(i) = F_j(i) \cap \Omega_0$, $G_j = (G_j(1), G_j(2), \dots, G_j(s))$, and

$$\mathscr{G} = (G_1, G_2, ..., G_t).$$

Then for each $j, 1 \leq j \leq t, \Omega_0 = \bigcup G_j$. Also, since $G_j(i) \subset F_j(i)$ for all j, i, the family \mathscr{G} separates points. Thus, by Theorem 1(b), it suffices now to show that $|\Omega_0| > s^t - s^{t-1}$, since any common transversal of $G_1, G_2, ..., G_t$ is also a common transversal of $F_1, F_2, ..., F_t$. Since \mathscr{F} separates points, the cardinal of $\Omega \mid \Omega_0$ cannot exceed the cardinal of the set of all those

t-tuples $(a_1, a_2, ..., a_t)$, $0 \leq a_j \leq s$, having at least one coordinate equal to 0 (excluding (0, 0, ..., 0)). That is, $|\Omega \setminus \Omega_0| \leq (s+1)^t - s^t - 1$. Hence

$$\begin{aligned} (s+1)^t - s^{t-1} - 1 &< |\Omega| = |\Omega_0| + |\Omega \backslash \Omega_0| \\ &\leq |\Omega_0| + (s+1)^t - s^t - 1, \end{aligned}$$

and therefore

$$|\Omega_0| > s^t - s^{t-1}.$$

This completes the proof of Theorem 2(b).

REFERENCES

1. P. HALL, On representatives on subsets, J. London Math. Soc. 10 (1935), 26-30.

2. J. Q. LONGYEAR, Common transversal in partitioning families, to appear.