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Given t families, each family consisting of s finite sets, we show that if the 
families “separate points” in a natural way, and if the union of all the sets in 
all the families contains more than (S + 1)” - st--l - 1 elements, then a common 
transversal of the t families exists. Pn case each family is a covering family, the 
bound is st - F. Both of these bounds are best possible. This work extends 
recent work of Longyear [2]. 

1. INTRODUCTION AND STATEMENT OF RESULTS 

Throughout this paper, the symbol 9 will always denote a family of 
t families of sets, each of the t families consisting of s finite, but not 
necessarily distinct or nonempty, sets. The symbol 52 will always denote 
the union of all of the sets contained in all of the t families. Thus 
9 = (Fl ) Fz )...) FJ, where for eachj, 1 <j < t, Fj = (F,(l), F,(2),..., Fj(s)) 
is a family of s (finite, but not necessarily distinct or nonempty) sets, and 
$2 = (J {Fj(i) [ 1 < j < t, 1 < i < s) (or more briefly, D = IJ IJ F). 
We always assume that F separates points of 8 in the following sense. 
Letting Fj(0) = Q\u Fj , 1 < j < t, we require 

for every t-tuple (aI , a2 ,..., a& where O<aj<s, 1 <j<t. 
Note that this immediately implies / Q / < (s + l)t - 1 (since 
/ n {Fj(0) 1 1 < j < t>/ = 0), and that in the case where each Fj covers 9 
(so that F?(O) = ,@) we have / Q / < 9. 

Recall that the set T is a transversal (sometimes called a system of distinct 
representatives or SDR) of the family Fi if there is a bijection v: T -+ 
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{I, 2,.~~, s) such that x E Fi(g?(x)) for aI1 x E T. The set ir- is a common 
fransversai of Fl 7 Fe ,.~., Ft if T is simultaneously a transversal of each pj , 
1 < j -< t.) 

In this paper the following results are proved, which extend recent results 
of Judith (9. Longyear 821. Longyear proved, among other things, 
Theorem 1 (b) below in the case where each family F+ is assumed to consist 
of mutually disjoint sets. Theorem i(b) can be obtained as a CorOtfary to 
her result. We give an alternative proof. 

(a} If / .Q j > s1 -- sb-l then each family Fj has a transversal, and 
st - P1 is best possible. 

(b) If 1 D 1 > 9 ~- sl-l then a commvn transversal of Fl , Fz ,..,, FL 
exists, and st -- sl-l is best possible. 

THEOREM 2. Let .9 and !G be as in the Jirst paragraph of this paper. 

(a) rf’ j Q j > (s + 1)” - (s -t l)t-l - 1 then each family Fj has a 
transversal, and (s -/- lJ1 -- (s -I I)t-l -- 1 is best possible. 

(b) 1‘ / L? ! > (s -1 ljL - s--l - 1 then a common transversal of 
Fl 7 Fz ,...) FL exists, and (s --t 1)” - .st-l .- 1 is best possible. 

2. PROOFS 
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Again F,(s) = m so Ft has no transversal, and it is easy to see that 
1 9 ( = (s + 1)” - (s + l)t-l - 1, D = U U 9, and 9 = (E; , Fz ,..., FJ 
separates points. 

For Theorem 2(b), let 9 be the set of all t-tuples (aI, a, ,,.., LQ), 
0 < aj < s, 1 < j < t, excZz&zg the set ({(al, a, ,..., at) ( 1 < ai < s, 
1 < j < t - 1, at = s} u {(0, 0 ,..., O)]). For allj, i, 1 ,< j < t, 1 < i < s, 
let 

F,(i) = {w E Q j the jth coordinate of w  equals i}. 

Then any element w  of E;(s) must have its j&h coordinate equal to 0 for 
some j, f t, and hence w  cannot represent any set in the family Fj, , 
therefore w  cannot belong to any common transversal of Fl , Fz ,..., Ft . 
Therefore no common transversal exists. Again it is easy to see that 
Ia(=(~+l)~-So-l-l,s=uu~,and~=(F~,F~,...,F,)sepa- 
rates points. 

Throughout the remaining proofs, the following notation will be used. 
It is therefore fixed once and for all. For t > 2, let X be the set of all 
(t - I)-tuples (aI, a, ,..., a,-,), where each aj , 1 <j < f - 1, satisfies 
1 < Q,~ < s. Note that j X I = sip-I. For each x = (aI, a2 ,..., atMl) E X, 
we denote by f(x) the set n (Fj(aj) j 1 < j < t - l}. Then since s 
distinguishes points and each Fj covers 9 we have / f(x) n F,(i)/ < 1 for all 
xEXandalli,l ~~i~,and~=UUCf(x)ixEX). 

Proof of Theorem l(a). The case t = 1 follows from the various 
definitions, so we assume t > 2, and without loss of generality we restrict 
our attention to Ft . We shall make use of the classical result of P. Hall [ I] 
according to which Ft has a transversal if and only if 1 U (F,(i) / i E 1}] > 
/I/ forallIC{l, 2,..., s>. Suppose that Ft does not have a transversal, and 
that I FL(il) u Ft(iz) u ..* u Ft(ik)/ < k, where k is as small as possible. 
Then Fe(&) C Ft(il) u Ft(iz) U *-. u Ft(ilc-J (Ft(ilc) = m if k = l), hence 
J2 = U {F,(i) / 1 < i < s, i f ilc). Then 

x EX} n (j (F*(i) [ 1 < i < ) ( 

= / tJ W4 n F,(i) I x f X, 1 < i < s, i # iEc} 

e I{(x, i) 1 x E X, 1 G i < s, i f &>I 
= St-+ - 1) = St - s&--1, 

contrary to the hypothesis of the Theorem. Hence F,, and similarly each Fj, 
has a transversal. 



~~~~~o~~l~eQrern I(b). Since the family Ft := (FL(J), F&Z),..., F,(s)) has 
a transversal (by Theorem l(a)) and covers 52, we can replace FL by a 
~~~~~~iol~ C = (G(l), G(2),..., C(s)) such that G(i) C F,(i) for all i, 1 ,< i 6 S. 
(The partition G can be constructed as follows. Let {wl , up ,..., wS> be a 
transversal of Fi 9 where wi E F,(i), 1 .<. i < s, Let 

G(s) -= F,(s)\( G( I ) u G(2) u e-a u G(s - 1)). 

Then 9’ = (FI , F’S ,..., F,-, , G) distinguishes points, hence j J’(X) n 
G(i)1 < 1 for all x E X and all i, 1 < i < s, and any common transversal 
of FI , Fz ,..., F,-, , G is a common transversal of FI , Fz ,..., Ft . 

At this point we could in fact replace every F’+ by a partition (since we 
know by Theorem l(a) that every Fj has a transversal); however, it is not 
necessary, and so we do not. 

We now demonstrate the existence of a common transversal of 
4 , F, ,..., Ft-1 , G. 

To this end we define a diugonul of X to be a subset D of X such that 
/ D 1 = sand for eachj, I :< j < t - 1, thejth coordinates of the elements 
of D run through {I, I&..., s> in some order. Note that whenever 
D = (x1, x, ,.,., XJ is a diagonal, wle EJ(.Q 1 < k -<, s, and wL , w, ).‘., W, 

are all distinct, then {w,. , w2 ,~.~: WJ is a common transversal of FI ) 
Fz ‘...3 FL-1 . 

Now we let 9 be some fixed collection of mutually disjoitzr diagonals of X 
whose union is X, X -: L) 9. (The existence of 9 can be shown by 
induction odl t.) 

Since i X / r- s*--I and every diagonal has s elements, we have ! g8 j = s’- 2m 
For any diagonal D, let f(D) == (J (f(x) j x E I?>. Then 

{j{x) j x c- X> Z= u (j( 

Now 
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Then since 1 f(xJ n G(j)1 < 1 for all i, j, and G is a partition of LJ, 
the s x s O-l matrix (e,J contains exactly If(D)], and hence more than 
3 - s, 1’s. Therefore there exist (as can be shown by induction on s) 
indices izjl , izj, ,...) i,j, such that eiIj, = eisiz = ... = ei i = 1 and s 8 
{iI 2 4 >..., 41 = Cl ,.A ,..,, j,} = (1, 2 ,..., s). 

Now let {We} = f(xi,) n G(jJ, 1 < k < s. Then since G is a partition, 
WlT Qh >..a> ws are all distinct, and hence {wl, w2 ,..., WJ is not only a 
transversal of G but is also (since {x1 , x2 ,..., x,> is a diagonal) a common 
transversal of Fl, Fz ,..., Ftvl . Therefore {wl, wz ,..., ws> is a common 
transversal of Fl , Fz ,..., FtF,_, , G, and hence of Fl , Fz ,..., Ft . 

This completes the proof of Theorem I(b). 

Proof of Theorem 2(a). Recall that for each j, 1 <j < t, Fj(0) denotes 
the complement in Q of the union of the family Fj , that is, Fj(0) = 

S\u {Fj(i) j 1 < i < s>. If now for each j, 1 < j < t, we let 

and let 9 = (GI , G, ,..., G& then 3 separates points and each family Gj 
covers 9, therefore we may proceed exactly as in the proof of Theorem l(a), 
where now we have t families with s + I sets in each family. Furthermore, 
since we know that fl {Fj(0) 1 1 <j < t) = o (this is so because 
u (F,(i) ) 1 < j < 1, 1 < i < s} = Q), the last inequality in the proof of 
Theorem I(a) can be replaced by 

I Q I < I{(% i) I x E X, 0 < i < s, i # ilc , (i, x) f= (0, (0, 0 ,..., O))>/ 

= (s + 1)” - (s + 1)$-l - 1 . 

This proves Theorem 2(a). 

Proof of Theorem 2(b). For each j, 1 < j < t, let Qnj = u Fj, and let 

For each j, i, 1 < j < t, 1 < i < s, let Gj(i) = F,(i) n Q, , Gj = 

(G(l), GG9,..., G(s)>, and 

9 = (G, , G, ,..., G,). 

Then for each j, 1 < j < t, Q, = (J Gj . Also, since Gi(i) C Ej(i) for ail j, i, 
the family 9 separates points. Thus, by Theorem l(b), it suffices now to 
show that / Sz, j > st - ,9-l, since any common transversal of GI , G, ,..., G, 
is also a common transversal of Fl , Fz ,..., Ft. Since 9= separates points, 
the cardinal of Q\O, cannot exceed the cardinal of the set of all those 



t-~tUj&2S (cI1 , a3 )..., at), 0 5; aj < s, having at least one coordinate equal 
to 0 (excluding (8, O,..., 0)). That is, 1 Q\L$ 1 < (s $- I)” ~- sf -- 1. 

(S + 1)” - St-’ - 1 < j Sk j I= / Sz, j -+- j .C?\Q, j 

< j Q) / + (s 4. 1)” -- 9 - I, 

and therefore 

If&l > St I p-1 * 

This completes the proof of Theorem 2(b). 
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