Common Transversals

T. C. Brown*
Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, V5A 1S6
Communicated by P. Erdos
Received October 10, 1975

Given t families, each family consisting of s finite sets, we show that if the families "separate points" in a natural way, and if the union of all the sets in all the families contains more than $(s+1)^{t}-s^{t-1}-1$ elements, then a common transversal of the t families exists. In case each family is a covering family, the bound is $s^{t}-s^{t-1}$. Both of these bounds are best possible. This work extends recent work of Longyear [2].

1. Introduction and Statement of Results

Throughout this paper, the symbol \mathscr{F} will always denote a family of t families of sets, each of the t families consisting of s finite, but not necessarily distinct or nonempty, sets. The symbol Ω will always denote the union of all of the sets contained in all of the t families. Thus $\mathscr{F}=\left(F_{1}, F_{2}, \ldots, F_{t}\right)$, where for each $j, 1 \leqslant j \leqslant t, F_{j}=\left(F_{j}(1), F_{j}(2), \ldots, F_{j}(s)\right)$ is a family of s (finite, but not necessarily distinct or nonempty) sets, and $\Omega=\bigcup\left\{F_{j}(i) \mid 1 \leqslant j \leqslant t, 1 \leqslant i \leqslant s\right\}$ (or more briefly, $\Omega=\bigcup \bigcup \mathscr{F}$). We always assume that \mathscr{F} separates points of Ω in the following sense. Letting $F_{j}(0)=\Omega \bigcup F_{j}, 1 \leqslant j \leqslant t$, we require

$$
\left|\bigcap\left\{F_{j}\left(a_{j}\right) \mid 1 \leqslant j \leqslant t\right\}\right| \leqslant 1
$$

for every t-tuple $\left(a_{1}, a_{2}, \ldots, a_{t}\right)$, where $0 \leqslant a_{j} \leqslant s, \quad 1 \leqslant j \leqslant t$. Note that this immediately implies $|\Omega| \leqslant(s+1)^{t}-1$ (since $\left|\cap\left\{F_{j}(0) \mid 1 \leqslant j \leqslant t\right\}\right|=0$), and that in the casc where each F_{j} covers Ω (so that $F_{j}(0)=\varnothing$) we have $|\Omega| \leqslant s^{t}$.

Recall that the set T is a transversal (sometimes called a system of distinct representatives or SDR) of the family F_{j} if there is a bijection $\varphi: T \rightarrow$

[^0]$\{1,2, \ldots, s\}$ such that $x \in F_{j}(\varphi(x))$ for all $x \in T$. The set T is a common transversal of $F_{1}, F_{2}, \ldots, F_{l}$ if T is simultaneously a transversal of each F_{j}, $1 \leqslant j \leqslant t$.)

In this paper the following results are proved, which extend recent results of Judith Q. Longyear [2]. Longyear proved, among other things, Theorem 1 (b) below in the case where each family F_{j} is assumed to consist of mutually disjoint sets. Theorem $1(b)$ can be obtained as a corollary to her result. We give an alternative proof.

Theorem 1. Let \mathscr{F} and Ω be as in the first paragraph of this paper, and assume further that each family F_{j} covers Ω, that is, $\cup F_{j}=\Omega, 1 \leqslant j \leqslant t$.
(a) If $|\Omega|>s^{t}-s^{t-1}$ then each family F_{j} has a transversal, and $s^{t}-s^{t-1}$ is best possible.
(b) If $|\Omega|>s^{t}-s^{t-1}$ then a common transversal of $F_{1}, F_{2}, \ldots, F_{t}$ exists, and $s^{i}-s^{i-1}$ is best possiblc.

Theorem 2. Let \mathscr{F} and Ω be as in the first paragraph of this paper.
(a) If $|\Omega|>(s+1)^{t}-(s+1)^{t-1}-1$ then each family F_{j} has a transversal, and $(s+1)^{t}-(s+1)^{t-1}-1$ is best possible.
(b) If $|\Omega|>(s+1)^{t}-s^{t-1}-1$ then a common transversal of $F_{1}, F_{2}, \ldots, F_{t}$ exists, and $(s+1)^{t}-s^{t-1}-1$ is best possible.

2. Proofs

Let us show first of all that the bounds given in Theorems 1 and 2 are best possible.

For Theorem 1(a) and Theorem I (b) let

$$
\Omega=\left\{\left(a_{1}, a_{2}, \ldots, a_{t}\right) \mid 1 \leqslant a_{j} \leqslant s, 1 \leqslant j \leqslant t-1,1 \leqslant a_{t} \leqslant s-1\right\} .
$$

For all $j, i, 1 \leqslant j \leqslant t, 1 \leqslant i \leqslant s$, let $F_{j}(i)=\{\omega \in \Omega \mid$ the j th coordinate of w equals i. Note that $F_{i}(s)=\varnothing$, so that F_{t} has no transversal. It is easy to see that $|\Omega|=s^{i}-s^{i-1}$, ench F_{j} covers $\left.\Omega,\right\} \leqslant j \leqslant t$, and $F=\left(F_{1}, F_{2}, \ldots, F_{l}\right)$ separates points.

For Theorem 2(a), we let

$$
\begin{aligned}
& \Omega=\left\{\left(a_{1}, a_{2}, \ldots, a_{t}\right) \mid 0 \leqslant a_{j} \leqslant s, 1 \leqslant j \leqslant t-1\right. \\
&\left.0 \leqslant a_{t} \leqslant s-1\right\}\{\{(0,0, \ldots, 0)\}
\end{aligned}
$$

For all $j, i, 1 \leqslant j \leqslant i, 1 \leqslant i \leqslant s$, let

$$
F_{j}(i)=\{\omega \in \Omega \mid \text { the } j \text { th coordinate of } \omega \text { equals } i\}
$$

Again $F_{t}(s)=\varnothing$ so F_{t} has no transversal, and it is easy to see that $|\Omega|=(s+1)^{t}-(s+1)^{t-1}-1, \Omega=\bigcup \bigcup \mathscr{F}$, and $\mathscr{F}=\left(F_{1}, F_{2}, \ldots, F_{t}\right)$ separates points.

For Theorem $2(\mathrm{~b})$, let Ω be the set of all t-tuples $\left(a_{1}, a_{2}, \ldots, a_{t}\right)$, $0 \leqslant a_{j} \leqslant s, 1 \leqslant j \leqslant t$, excluding the set $\left(\left\{\left(a_{1}, a_{2}, \ldots, a_{t}\right) \mid 1 \leqslant a_{j} \leqslant s\right.\right.$, $\left.\left.1 \leqslant j \leqslant t-1, a_{t}=s\right\} \cup\{(0,0, \ldots, 0)\}\right)$. For all $j, i, 1 \leqslant j \leqslant t, 1 \leqslant i \leqslant s$, let

$$
F_{j}(i)=\{\omega \in \Omega \mid \text { the } j \text { th coordinate of } \omega \text { equals } i\} .
$$

Then any element ω of $F_{i}(s)$ must have its j_{0} th coordinate equal to 0 for some $j_{0} \neq t$, and hence ω cannot represent any set in the family $F_{j_{0}}$, therefore ω cannot belong to any common transversal of $F_{1}, F_{2}, \ldots, F_{t}$. Therefore no common transversal exists. Again it is easy to see that $|\Omega|=(s+1)^{t}-s^{t-1}-1, \Omega=\bigcup \bigcup \mathscr{F}$, and $\mathscr{F}=\left(F_{1}, F_{2}, \ldots, F_{t}\right)$ separates points.

Throughout the remaining proofs, the following notation will be used. It is therefore fixed once and for all. For $t \geqslant 2$, let X be the set of all ($t-1$)-tuples ($a_{1}, a_{2}, \ldots, a_{t-1}$), where each $a_{j}, 1 \leqslant j \leqslant t-1$, satisfies $1 \leqslant a_{j} \leqslant s$. Note that $|X|=s^{t-1}$. For each $x=\left(a_{1}, a_{2}, \ldots, a_{t-1}\right) \in X$, we denote by $f(x)$ the set $\cap\left\{F_{j}\left(a_{j}\right) \mid 1 \leqslant j \leqslant t-1\right\}$. Then since \mathscr{F} distinguishes points and each F_{j} covers Ω we have $\left|f(x) \cap F_{t}(i)\right| \leqslant 1$ for all $x \in X$ and all $i, 1 \leqslant i \leqslant s$, and $\Omega=\bigcup\{f(x) \mid x \in X\}$.

Proof of Theorem 1(a). The case $t=1$ follows from the various definitions, so we assume $t \geqslant 2$, and without loss of generality we restrict our attention to F_{t}. We shall make use of the classical result of P. Hall [1] according to which F_{t} has a transversal if and only if $\left|\bigcup\left\{F_{t}(i) \mid i \in I\right\}\right\rangle \geqslant$ $|I|$ for all $I \subset\{1,2, \ldots, s\}$. Suppose that F_{t} does not have a transversal, and that $\left|F_{t}\left(i_{1}\right) \cup F_{t}\left(i_{2}\right) \cup \cdots \cup F_{t}\left(i_{k}\right)\right|<k$, where k is as small as possible. Then $F_{t}\left(i_{k}\right) \subset F_{t}\left(i_{1}\right) \cup F_{t}\left(i_{2}\right) \cup \cdots \cup F_{t}\left(i_{k_{-1}-1}\right)\left(F_{t}\left(i_{k}\right)=\varnothing\right.$ if $\left.k=1\right)$, hence $\Omega=\bigcup\left\{F_{t}(i) \mid 1 \leqslant i \leqslant s, i \neq i_{k}\right\}$. Then

$$
\begin{aligned}
|\Omega| & =\left|(\bigcup\{f(x) \mid x \in X\}) \cap\left(\bigcup\left\{F_{t}(i) \mid 1 \leqslant i \leqslant s, i \neq i_{k}\right\}\right)\right| \\
& =\left|\bigcup\left\{f(x) \cap F_{t}(i) \mid x \in X, 1 \leqslant i \leqslant s, i \neq i_{k}\right\}\right| \\
& \leqslant\left|\left\{(x, i) \mid x \in X, 1 \leqslant i \leqslant s, i \neq i_{k}\right\}\right| \\
& =s^{t-1}(s \cdots 1)=s^{t}-s^{t-1},
\end{aligned}
$$

contrary to the hypothesis of the Theorem. Hence F_{t}, and similarly each F_{j}, has a transversal.

Proof of Theorem 1(b). Since the family $F_{t}=\left(F_{t}(1), F_{t}(2), \ldots, F_{t}(s)\right)$ has a transversal (by Theorem l(a)) and covers Ω, we can replace F_{i} by a partition $G=(G(1), G(2), \ldots, G(s))$ such that $G(i) \subset F_{t}(i)$ for all $i, 1 \leqslant i \leqslant s$. (The partition G can be constructed as follows. Let $\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{s}\right\}$ be a transversal of F_{t}, where $\omega_{i} \in F_{t}(i), 1 \leqslant i \leqslant s$. Let

$$
\begin{aligned}
G(1) & =F_{t}(1)\left\{\left\{\omega_{2}, \ldots, \omega_{s}\right\}\right. \\
G(2) & =F_{t}(2) \backslash\left(G(1) \cup\left\{\omega_{3}, \ldots, \omega_{s}\right\}\right. \\
G(3) & =F_{t}(3) \backslash\left(G(1) \cup G(2) \cup\left\{\omega_{4}, \ldots, \omega_{s}\right\}\right) \\
& \vdots \\
G(s) & =F_{t}(s) \backslash(G(1) \cup G(2) \cup \cdots \cup G(s-1)) .
\end{aligned}
$$

Then $\mathscr{F}^{\prime}-\left(F_{1}, F_{2}, \ldots, F_{t-1}, G\right)$ distinguishes points, hence $\mid f(x) \cap$ $G(i) \mid \leqslant 1$ for all $x \in X$ and all $i, 1 \leqslant i \leqslant s$, and any common transversal of $F_{1}, F_{2}, \ldots, F_{t-1}, G$ is a common transversal of $F_{1}, F_{2}, \ldots, F_{t}$.

At this point we could in fact replace every F_{j} by a partition (since we know by Theorem 1(a) that every F_{j} has a transversal); however, it is not necessary, and so we do not.

We now demonstrate the existence of a common transversal of $F_{1}, F_{2}, \ldots, F_{t-1}, G$.

To this end we define a diagonal of X to be a subset D of X such that $|D|=s$ and for each $j, 1 \leqslant j \leqslant t-1$, the j th coordinates of the elements of D run through $\{1,2, \ldots, s\}$ in some order. Note that whenever $D=\left\{x_{1}, x_{2}, \ldots, x_{s}\right\}$ is a diagonal, $\omega_{k_{c}} \in f\left(x_{k}\right), 1 \leqslant k \leqslant s$, and $\omega_{1}, \omega_{2}, \ldots, \omega_{s}$ are all distinct, then $\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{s}\right\}$ is a common transversal of F_{1}, F_{2}, \ldots, F_{t-1}.

Now we let \mathscr{D} be some fixed collection of mutually disjoint diagonals of X whose union is $X, X=\bigcup \mathscr{D}$. (The existence of \mathscr{D} can be shown by induction on t.)

Since $\left|X^{\prime}\right|=-s^{*-1}$ and every diagonal has s elements, we have $|D|=s^{t-2}$. For any diagonal $D, \operatorname{let} f(D)=\bigcup\{f(x) \mid x \in D\}$. Then

$$
\Omega=\bigcup\{f(x) \mid x \in X\}=\bigcup\{f(D) \mid D=\mathscr{S}
$$

Now

$$
s^{h}-s^{t+1}<|\Omega| \leqslant \sum_{D \in \mathscr{G}}|f(D)| \leqslant|\mathscr{D}| \max \{|f(D)| \mid D \in \mathscr{F}\}
$$

hence $s^{2}-s<\max \{f(D) \mid\{D=\mathbb{D}\}$.
We now fix a diagonal D with $s^{2} \cdots s<|f(D)|$. Let $D=\left\{x_{1}, x_{2}, \ldots, x_{s}\right\}$, and define, for $1 \leqslant i \leqslant s, 1 \leqslant j \leqslant s$,

$$
e_{i j}= \begin{cases}1 & \text { if } f\left(x_{i}\right) \cap G(j) \neq \varnothing \\ 0 & \text { otherwise. }\end{cases}
$$

Then since $\left|f\left(x_{i}\right) \cap G(j)\right| \leqslant 1$ for all i, j, and G is a partition of Ω, the $s \times s 0$ - 1 matrix $\left(e_{i j}\right)$ contains exactly $|f(D)|$, and hence more than $s^{2}-s$, 1's. Therefore there exist (as can be shown by induction on s) indices $i_{1} j_{1}, i_{2} j_{2}, \ldots, i_{s} j_{s}$ such that $e_{i_{1} j_{1}}=e_{i_{2} j_{2}}=\cdots=e_{i_{3} j_{s}}=1$ and $\left\{i_{1}, i_{2}, \ldots, i_{s}\right\}=\left\{j_{1}, j_{2}, \ldots, j_{s}\right\}=\{1,2, \ldots, s\}$.

Now let $\left\{\omega_{k}\right\}=f\left(x_{i_{r}}\right\} \cap G\left(j_{k}\right), 1 \leqslant k \leqslant s$. Then since G is a partition, $\omega_{1}, \omega_{2}, \ldots, \omega_{s}$ are all distinct, and hence $\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{s}\right\}$ is not only a transversal of G but is also (since $\left\{x_{1}, x_{2}, \ldots, x_{s}\right\}$ is a diagonal) a common transversal of $F_{1}, F_{2}, \ldots, F_{t-1}$. Therefore $\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{s}\right\}$ is a common transversal of $F_{1}, F_{2}, \ldots, F_{t-1}, G$, and hence of $F_{1}, F_{2}, \ldots, F_{t}$.

This completes the proof of Theorem 1(b).
Proof of Theorem 2(a). Recall that for each $j, 1 \leqslant j \leqslant t, F_{j}(0)$ denotes the complement in Ω of the union of the family F_{j}, that is, $F_{j}(0)=$ $\Omega \backslash \bigcup\left\{F_{j}(i) \mid 1 \leqslant i \leqslant s\right\}$. If now for each $j, 1 \leqslant j \leqslant t$, we let

$$
G_{j}=\left(F_{j}(0), F_{j}(1), \ldots, F_{j}(s)\right),
$$

and let $\mathscr{G}=\left(G_{1}, G_{2}, \ldots, G_{t}\right)$, then \mathscr{G} separates points and each family G_{j} covers Ω, therefore we may proceed exactly as in the proof of Theorem 1(a), where now we have t families with $s+1$ sets in each family. Furthermore, since we know that $\bigcap\left\{F_{j}(0) \mid 1 \leqslant j \leqslant t\right\}=\varnothing$ (this is so because $\left.\bigcup\left\{F_{j}(i) \mid 1 \leqslant j \leqslant t, 1 \leqslant i \leqslant s\right\}=\Omega\right)$, the last inequality in the proof of Theorem 1(a) can be replaced by

$$
\begin{aligned}
|\Omega| & \leqslant\left|\left\{(x, i) \mid x \in X, 0 \leqslant i \leqslant s, i \neq i_{k},(i, x) \neq(0,(0,0, \ldots, 0))\right\}\right| \\
& =(s+1)^{t}-(s+1)^{t-1}-1
\end{aligned}
$$

This proves Theorem 2(a).
Proof of Theorem 2(b). For each $j, 1 \leqslant j \leqslant t$, let $\Omega_{j}=\bigcup F_{j}$, and let

$$
\Omega_{0}=\bigcap\left\{\Omega_{j} \mid 1 \leqslant j \leqslant t\right\}
$$

For each $j, i, 1 \leqslant j \leqslant t, 1 \leqslant i \leqslant s$, let $G_{j}(i)=F_{j}(i) \cap \Omega_{0}, \quad G_{j}=$ $\left(G_{j}(1), G_{j}(2), \ldots, G_{j}(s)\right)$, and

$$
\mathscr{G}=\left(G_{1}, G_{2}, \ldots, G_{t}\right)
$$

Then for each $j, 1 \leqslant j \leqslant t, \Omega_{0}=\bigcup G_{j}$. Also, since $G_{j}(i) \subset F_{j}(i)$ for all j, i, the family \mathscr{G} separates points. Thus, by Theorem $1(b)$, it suffices now to show that $\left|\Omega_{0}\right|>s^{t}-s^{t-1}$, since any common transversal of $G_{1}, G_{2}, \ldots, G_{t}$ is also a common transversal of $F_{1}, F_{2}, \ldots, F_{t}$. Since \mathscr{F} separates points, the cardinal of $\Omega \backslash \Omega_{0}$ cannot exceed the cardinal of the set of all those
i-tuples $\left(a_{1}, a_{2}, \ldots, a_{t}\right), 0 \leqslant a_{j} \leqslant s$, having at least one coordinate equal to 0 (excluding $(0,0, \ldots, 0))$. That is, $\left|\Omega \backslash \Omega_{0}\right| \leqslant(s+1)^{t}-s^{t}-1$. Hence

$$
\begin{aligned}
(s+1)^{t}-s^{t-1}-1 & <|\Omega|=\left|\Omega_{0}\right|+|\Omega| \Omega_{0} \mid \\
& \leqslant\left|\Omega_{0}\right|+(s+1)^{t}-s^{t}-1
\end{aligned}
$$

and therefore

$$
\left|\Omega_{0}\right|>s^{t}-s^{t-1}
$$

This completes the proof of Theorem 2(b).

References

1. P. Hall, On representatives on subsets, J. London Math. Soc. 10 (1935), 26-30.
2. J. Q. Longyear, Common transversal in partitioning families, to appear.

[^0]: * Partially supported by Canadian NRC Grant No. A-3982.

