62,261 research outputs found

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results

    Ethernet - a survey on its fields of application

    Get PDF
    During the last decades, Ethernet progressively became the most widely used local area networking (LAN) technology. Apart from LAN installations, Ethernet became also attractive for many other fields of application, ranging from industry to avionics, telecommunication, and multimedia. The expanded application of this technology is mainly due to its significant assets like reduced cost, backward-compatibility, flexibility, and expandability. However, this new trend raises some problems concerning the services of the protocol and the requirements for each application. Therefore, specific adaptations prove essential to integrate this communication technology in each field of application. Our primary objective is to show how Ethernet has been enhanced to comply with the specific requirements of several application fields, particularly in transport, embedded and multimedia contexts. The paper first describes the common Ethernet LAN technology and highlights its main features. It reviews the most important specific Ethernet versions with respect to each application field’s requirements. Finally, we compare these different fields of application and we particularly focus on the fundamental concepts and the quality of service capabilities of each proposal

    Towards transnational interoperable PPDR communications: the European ISI cloud network

    Get PDF
    The European Council has been stressing the need for interoperability among technologies used for Public Protection and Disaster Relief (PPDR) communications across Europe for a long time. Nevertheless, while the introduction of TETRA and TETRAPOL technologies in the last two decades has increased the possibility to talk cross agency internally in a country, cross border communication for the public safety forces is not well solved as of today. This paper describes the communications interoperability solution that is being developed in the framework of the ISITEP project. This solution, referred to as the European Inter-System Interface (ISI) Cloud Network, aims to integrate the PPDR national/regional infrastructures to allow migration (i.e., roaming) and communication services between networks within a secure framework. The ISI Cloud Network involves, among other components, the specification of a new ISI interface to be deployed over IP transport networks and the development of a number of different gateways to cover the use of TETRA and TETRAPOL technologies as well as the use of legacy TETRA ISI by some networks.Peer ReviewedPostprint (author's final draft

    Post Sockets: Towards an Evolvable Network Transport Interface

    Get PDF
    The traditional Sockets API is showing its age, and no longer provides effective support for modern networked applications. This has led to a proliferation of non-standard extensions, alternative APIs, and workarounds that enable new features and allow applications to make good use of the network, but are difficult to use, and require expert knowledge that is not widespread. In this paper, we present Post Sockets, a proposed new standard network API, that is designed to support modern network transport protocols and features, while raising the level of abstraction and enhancing usability. Specifically, Post Sockets aims to give portable applications the ability to use a clear, messages based, interface to multi-path and multi-stream transports, rendezvous and connection racing, and fast connection re-establishment

    Integration of Carrier Aggregation and Dual Connectivity for the ns-3 mmWave Module

    Full text link
    Thanks to the wide availability of bandwidth, the millimeter wave (mmWave) frequencies will provide very high data rates to mobile users in next generation 5G cellular networks. However, mmWave links suffer from high isotropic pathloss and blockage from common materials, and are subject to an intermittent channel quality. Therefore, protocols and solutions at different layers in the cellular network and the TCP/IP protocol stack have been proposed and studied. A valuable tool for the end-to-end performance analysis of mmWave cellular networks is the ns-3 mmWave module, which already models in detail the channel, Physical (PHY) and Medium Access Control (MAC) layers, and extends the Long Term Evolution (LTE) stack for the higher layers. In this paper we present an implementation for the ns-3 mmWave module of multi connectivity techniques for 3GPP New Radio (NR) at mmWave frequencies, namely Carrier Aggregation (CA) and Dual Connectivity (DC), and discuss how they can be integrated to increase the functionalities offered by the ns-3 mmWave module.Comment: 9 pages, 7 figures, submitted to the Workshop on ns-3 (WNS3) 201

    Building Programmable Wireless Networks: An Architectural Survey

    Full text link
    In recent times, there have been a lot of efforts for improving the ossified Internet architecture in a bid to sustain unstinted growth and innovation. A major reason for the perceived architectural ossification is the lack of ability to program the network as a system. This situation has resulted partly from historical decisions in the original Internet design which emphasized decentralized network operations through co-located data and control planes on each network device. The situation for wireless networks is no different resulting in a lot of complexity and a plethora of largely incompatible wireless technologies. The emergence of "programmable wireless networks", that allow greater flexibility, ease of management and configurability, is a step in the right direction to overcome the aforementioned shortcomings of the wireless networks. In this paper, we provide a broad overview of the architectures proposed in literature for building programmable wireless networks focusing primarily on three popular techniques, i.e., software defined networks, cognitive radio networks, and virtualized networks. This survey is a self-contained tutorial on these techniques and its applications. We also discuss the opportunities and challenges in building next-generation programmable wireless networks and identify open research issues and future research directions.Comment: 19 page

    Energy Efficiency of Network Cooperation for Cellular Uplink Transmissions

    Full text link
    There is a growing interest in energy efficient or so-called "green" wireless communication to reduce the energy consumption in cellular networks. Since today's wireless terminals are typically equipped with multiple network access interfaces such as Bluetooth, Wi-Fi, and cellular networks, this paper investigates user terminals cooperating with each other in transmitting their data packets to a base station (BS) by exploiting the multiple network access interfaces, referred to as inter-network cooperation, to improve the energy efficiency in cellular uplink transmission. Given target outage probability and data rate requirements, we develop a closed-form expression of energy efficiency in Bits-per-Joule for the inter-network cooperation by taking into account the path loss, fading, and thermal noise effects. Numerical results show that when the cooperating users move towards to each other, the proposed inter-network cooperation significantly improves the energy efficiency as compared with the traditional non-cooperation and intra-network cooperation. This implies that given a certain amount of bits to be transmitted, the inter-network cooperation requires less energy than the traditional non-cooperation and intra-network cooperation, showing the energy saving benefit of inter-network cooperation.Comment: in Proceedings of the 2013 IEEE International Conference on Communications (IEEE ICC 2013), Budapest, Hungary, June 201
    corecore