4,011 research outputs found

    Commentary on Inter-Domain Routing in the Internet

    Full text link

    End-Site Routing Support for IPv6 Multihoming

    Get PDF
    Multihoming is currently widely used to provide fault tolerance and traffic engineering capabilities. It is expected that, as telecommunication costs decrease, its adoption will become more and more prevalent. Current multihoming support is not designed to scale up to the expected number of multihomed sites, so alternative solutions are required, especially for IPv6. In order to preserve interdomain routing scalability, the new multihoming solution has to be compatible with Provider Aggregatable addressing. However, such addressing scheme imposes the configuration of multiple prefixes in multihomed sites, which in turn causes several operational difficulties within those sites that may even result in communication failures when all the ISPs are working properly. In this paper we propose the adoption of Source Address Dependent routing within the multihomed site to overcome the identified difficulties.Publicad

    Scalable Support for Globally Moving Networks

    Get PDF
    This paper proposes a scalable solution for the support for globally moving networks. It is basically oriented to airborne mobile networks built in commercial aircrafts in order to provide Internet access to the passengers. As opposed to currently used solutions, the proposed solution has no impact in the global routing tables while it provides optimized paths between the mobile network and the rest of the Internet The proposed solution is an extension to the IETF standard network mobility support protocol and relies on the communication through multiple geographically distributed Home Agents in order to avoid panoramic routing imposed by single anchor points as in the case of a single Home Agent. The proposed solution includes a mechanism to select the best Home Agent to route new communications through.This project has been supported by Optinet project TIC-2003-09042-C03-01 and IMPROVISA project.Publicad

    On Compact Routing for the Internet

    Full text link
    While there exist compact routing schemes designed for grids, trees, and Internet-like topologies that offer routing tables of sizes that scale logarithmically with the network size, we demonstrate in this paper that in view of recent results in compact routing research, such logarithmic scaling on Internet-like topologies is fundamentally impossible in the presence of topology dynamics or topology-independent (flat) addressing. We use analytic arguments to show that the number of routing control messages per topology change cannot scale better than linearly on Internet-like topologies. We also employ simulations to confirm that logarithmic routing table size scaling gets broken by topology-independent addressing, a cornerstone of popular locator-identifier split proposals aiming at improving routing scaling in the presence of network topology dynamics or host mobility. These pessimistic findings lead us to the conclusion that a fundamental re-examination of assumptions behind routing models and abstractions is needed in order to find a routing architecture that would be able to scale ``indefinitely.''Comment: This is a significantly revised, journal version of cs/050802

    A critical look at power law modelling of the Internet

    Get PDF
    This paper takes a critical look at the usefulness of power law models of the Internet. The twin focuses of the paper are Internet traffic and topology generation. The aim of the paper is twofold. Firstly it summarises the state of the art in power law modelling particularly giving attention to existing open research questions. Secondly it provides insight into the failings of such models and where progress needs to be made for power law research to feed through to actual improvements in network performance.Comment: To appear Computer Communication

    Preserving Established Communications in IPv6 Multi-homed Sites with MEX

    Get PDF
    This research was supported by the SAM (Advanced Mobility Services) project, funded by the Spanish National R&D Programme under contract MCYT TIC2002-04531-C04-03.A proper support for multimedia communications transport has to provide fault tolerance capabilities such as the preservation of established connections in case of failures. While multi-homing addresses this issue, the currently available solution based in massive BGP route injection presents serious scalability limitations, since it contributes to the exponential growth of the BGP table size. Alternative solutions proposed for IPv6 fail to provide equivalent facilities to the current BGP based solution. In this paper we present MEX (Muti-homing through EXtension header) a novel proposal for the provision of IPv6 multi-homing capabilities. MEX preserves overall scalability by storing alternative route information in end-hosts while at the same time reduces packet loss by allowing routers to re-route in-course packets. This behavior is enabled by conveying alternative route information within packets inside a newly defined Extension Header. The resulting system provides fault tolerance capabilities and preserves scalability, while the incurred costs, namely deployment and packet overhead, are only imposed to those that benefit from it. An implementation of the MEX host and router components is also presented.Publicad

    Traffic engineering in multihomed sites

    Get PDF
    It is expected that IPv6 multihomed sites will obtain as many global prefixes as direct providers they have, so traffic engineering techniques currently used in IPv4 multihomed sites is no longer suitable. However, traffic engineering is required for several reasons, and in particular, for being able to properly support multimedia communications. In this paper we present a framework for traffic engineering in IPv6 multihomed sites with multiple global prefixes. Within this framework, we have included several tools such as DNS record manipulation and proper configuration of the policy table defined in RFC 3484. To provide automation in the management of traffic engineering, we analyzed the usage of two mechanisms to configure the policy table.This work has been partly supported by the European Union under the E-Next Project FP6-506869 and by the OPTINET6 project TIC-2003-09042-C03-01.Publicad

    The State of Network Neutrality Regulation

    Get PDF
    The Network Neutrality (NN) debate refers to the battle over the design of a regulatory framework for preserving the Internet as a public network and open innovation platform. Fueled by concerns that broadband access service providers might abuse network management to discriminate against third party providers (e.g., content or application providers), policymakers have struggled with designing rules that would protect the Internet from unreasonable network management practices. In this article, we provide an overview of the history of the debate in the U.S. and the EU and highlight the challenges that will confront network engineers designing and operating networks as the debate continues to evolve.BMBF, 16DII111, Verbundprojekt: Weizenbaum-Institut fĂĽr die vernetzte Gesellschaft - Das Deutsche Internet-Institut; Teilvorhaben: Wissenschaftszentrum Berlin fĂĽr Sozialforschung (WZB)EC/H2020/679158/EU/Resolving the Tussle in the Internet: Mapping, Architecture, and Policy Making/ResolutioNe

    Adaptive Traffic Fingerprinting for Darknet Threat Intelligence

    Full text link
    Darknet technology such as Tor has been used by various threat actors for organising illegal activities and data exfiltration. As such, there is a case for organisations to block such traffic, or to try and identify when it is used and for what purposes. However, anonymity in cyberspace has always been a domain of conflicting interests. While it gives enough power to nefarious actors to masquerade their illegal activities, it is also the cornerstone to facilitate freedom of speech and privacy. We present a proof of concept for a novel algorithm that could form the fundamental pillar of a darknet-capable Cyber Threat Intelligence platform. The solution can reduce anonymity of users of Tor, and considers the existing visibility of network traffic before optionally initiating targeted or widespread BGP interception. In combination with server HTTP response manipulation, the algorithm attempts to reduce the candidate data set to eliminate client-side traffic that is most unlikely to be responsible for server-side connections of interest. Our test results show that MITM manipulated server responses lead to expected changes received by the Tor client. Using simulation data generated by shadow, we show that the detection scheme is effective with false positive rate of 0.001, while sensitivity detecting non-targets was 0.016+-0.127. Our algorithm could assist collaborating organisations willing to share their threat intelligence or cooperate during investigations.Comment: 26 page
    • …
    corecore