93,274 research outputs found

    Neural-Symbolic Recommendation with Graph-Enhanced Information

    Full text link
    The recommendation system is not only a problem of inductive statistics from data but also a cognitive task that requires reasoning ability. The most advanced graph neural networks have been widely used in recommendation systems because they can capture implicit structured information from graph-structured data. However, like most neural network algorithms, they only learn matching patterns from a perception perspective. Some researchers use user behavior for logic reasoning to achieve recommendation prediction from the perspective of cognitive reasoning, but this kind of reasoning is a local one and ignores implicit information on a global scale. In this work, we combine the advantages of graph neural networks and propositional logic operations to construct a neuro-symbolic recommendation model with both global implicit reasoning ability and local explicit logic reasoning ability. We first build an item-item graph based on the principle of adjacent interaction and use graph neural networks to capture implicit information in global data. Then we transform user behavior into propositional logic expressions to achieve recommendations from the perspective of cognitive reasoning. Extensive experiments on five public datasets show that our proposed model outperforms several state-of-the-art methods, source code is avaliable at [https://github.com/hanzo2020/GNNLR].Comment: 12 pages, 2 figures, conferenc

    A New Phase Transition for Local Delays in MANETs

    Get PDF
    We consider Mobile Ad-hoc Network (MANET) with transmitters located according to a Poisson point in the Euclidean plane, slotted Aloha Medium Access (MAC) protocol and the so-called outage scenario, where a successful transmission requires a Signal-to-Interference-and-Noise (SINR) larger than some threshold. We analyze the local delays in such a network, namely the number of times slots required for nodes to transmit a packet to their prescribed next-hop receivers. The analysis depends very much on the receiver scenario and on the variability of the fading. In most cases, each node has finite-mean geometric random delay and thus a positive next hop throughput. However, the spatial (or large population) averaging of these individual finite mean-delays leads to infinite values in several practical cases, including the Rayleigh fading and positive thermal noise case. In some cases it exhibits an interesting phase transition phenomenon where the spatial average is finite when certain model parameters are below a threshold and infinite above. We call this phenomenon, contention phase transition. We argue that the spatial average of the mean local delays is infinite primarily because of the outage logic, where one transmits full packets at time slots when the receiver is covered at the required SINR and where one wastes all the other time slots. This results in the "RESTART" mechanism, which in turn explains why we have infinite spatial average. Adaptive coding offers a nice way of breaking the outage/RESTART logic. We show examples where the average delays are finite in the adaptive coding case, whereas they are infinite in the outage case.Comment: accepted for IEEE Infocom 201

    Approximate Quantum Fourier Transform and Decoherence

    Get PDF
    We discuss the advantages of using the approximate quantum Fourier transform (AQFT) in algorithms which involve periodicity estimations. We analyse quantum networks performing AQFT in the presence of decoherence and show that extensive approximations can be made before the accuracy of AQFT (as compared with regular quantum Fourier transform) is compromised. We show that for some computations an approximation may imply a better performance.Comment: 14 pages, 10 fig. (8 *.eps files). More information on http://eve.physics.ox.ac.uk/QChome.html http://www.physics.helsinki.fi/~kasuomin http://www.physics.helsinki.fi/~kira/group.htm

    Using Scratch to Teach Undergraduate Students' Skills on Artificial Intelligence

    Full text link
    This paper presents a educational workshop in Scratch that is proposed for the active participation of undergraduate students in contexts of Artificial Intelligence. The main objective of the activity is to demystify the complexity of Artificial Intelligence and its algorithms. For this purpose, students must realize simple exercises of clustering and two neural networks, in Scratch. The detailed methodology to get that is presented in the article.Comment: 6 pages, 7 figures, workshop presentatio

    Neural networks for calibration tomography

    Get PDF
    Artificial neural networks are suitable for performing pattern-to-pattern calibrations. These calibrations are potentially useful for facilities operations in aeronautics, the control of optical alignment, and the like. Computed tomography is compared with neural net calibration tomography for estimating density from its x-ray transform. X-ray transforms are measured, for example, in diffuse-illumination, holographic interferometry of fluids. Computed tomography and neural net calibration tomography are shown to have comparable performance for a 10 degree viewing cone and 29 interferograms within that cone. The system of tomography discussed is proposed as a relevant test of neural networks and other parallel processors intended for using flow visualization data

    How to help intelligent systems with different uncertainty representations cooperate with each other

    Get PDF
    In order to solve a complicated problem one must use the knowledge from different domains. Therefore, if one wants to automatize the solution of these problems, one has to help the knowledge-based systems that correspond to these domains cooperate, that is, communicate facts and conclusions to each other in the process of decision making. One of the main obstacles to such cooperation is the fact that different intelligent systems use different methods of knowledge acquisition and different methods and formalisms for uncertainty representation. So an interface f is needed, 'translating' the values x, y, which represent uncertainty of the experts' knowledge in one system, into the values f(x), f(y) appropriate for another one. The problem of designing such an interface as a mathematical problem is formulated and solved. It is shown that the interface must be fractionally linear: f(x) = (ax + b)/(cx + d)
    • …
    corecore