2 research outputs found

    Combining over- and under-approximating program analyses for automatic software testing

    Get PDF
    This dissertation attacks the well-known problem of path-imprecision in static program analysis. Our starting point is an existing static program analysis that over-approximates the execution paths of the analyzed program. We then make this over-approximating program analysis more precise for automatic testing in an object-oriented programming language. We achieve this by combining the over-approximating program analysis with usage-observing and under-approximating analyses. More specifically, we make the following contributions. We present a technique to eliminate language-level unsound bug warnings produced by an execution-path-over-approximating analysis for object-oriented programs that is based on the weakest precondition calculus. Our technique post-processes the results of the over-approximating analysis by solving the produced constraint systems and generating and executing concrete test-cases that satisfy the given constraint systems. Only test-cases that confirm the results of the over-approximating static analysis are presented to the user. This technique has the important side-benefit of making the results of a weakest-precondition based static analysis easier to understand for human consumers. We show examples from our experiments that visually demonstrate the difference between hundreds of complicated constraints and a simple corresponding JUnit test-case. Besides eliminating language-level unsound bug warnings, we present an additional technique that also addresses user-level unsound bug warnings. This technique pre-processes the testee with a dynamic analysis that takes advantage of actual user data. It annotates the testee with the knowledge obtained from this pre-processing step and thereby provides guidance for the over-approximating analysis. We also present an improvement to dynamic invariant detection for object-oriented programming languages. Previous approaches do not take behavioral subtyping into account and therefore may produce inconsistent results, which can throw off automated analyses such as the ones we are performing for bug-finding. Finally, we address the problem of unwanted dependencies between test-cases caused by global state. We present two techniques for efficiently re-initializing global state between test-case executions and discuss their trade-offs. We have implemented the above techniques in the JCrasher, Check 'n' Crash, and DSD-Crasher tools and present initial experience in using them for automated bug finding in real-world Java programs.Ph.D.Committee Chair: Smaragdakis, Yannis; Committee Member: Dwyer, Matthew; Committee Member: Orso, Alessandro; Committee Member: Pande, Santosh; Committee Member: Rugaber, Spence

    Detecting Dissimilar Classes of Source Code Defects

    Get PDF
    Software maintenance accounts for the most part of the software development cost and efforts, with its major activities focused on the detection, location, analysis and removal of defects present in the software. Although software defects can be originated, and be present, at any phase of the software development life-cycle, implementation (i.e., source code) contains more than three-fourths of the total defects. Due to the diverse nature of the defects, their detection and analysis activities have to be carried out by equally diverse tools, often necessitating the application of multiple tools for reasonable defect coverage that directly increases maintenance overhead. Unified detection tools are known to combine different specialized techniques into a single and massive core, resulting in operational difficulty and maintenance cost increment. The objective of this research was to search for a technique that can detect dissimilar defects using a simplified model and a single methodology, both of which should contribute in creating an easy-to-acquire solution. Following this goal, a ‘Supervised Automation Framework’ named FlexTax was developed for semi-automatic defect mapping and taxonomy generation, which was then applied on a large-scale real-world defect dataset to generate a comprehensive Defect Taxonomy that was verified using machine learning classifiers and manual verification. This Taxonomy, along with an extensive literature survey, was used for comprehension of the properties of different classes of defects, and for developing Defect Similarity Metrics. The Taxonomy, and the Similarity Metrics were then used to develop a defect detection model and associated techniques, collectively named Symbolic Range Tuple Analysis, or SRTA. SRTA relies on Symbolic Analysis, Path Summarization and Range Propagation to detect dissimilar classes of defects using a simplified set of operations. To verify the effectiveness of the technique, SRTA was evaluated by processing multiple real-world open-source systems, by direct comparison with three state-of-the-art tools, by a controlled experiment, by using an established Benchmark, by comparison with other tools through secondary data, and by a large-scale fault-injection experiment conducted using a Mutation-Injection Framework, which relied on the taxonomy developed earlier for the definition of mutation rules. Experimental results confirmed SRTA’s practicality, generality, scalability and accuracy, and proved SRTA’s applicability as a new Defect Detection Technique
    corecore