7 research outputs found

    COVID-19 Suspects Monitoring System Based on Symptom recognition using Deep Neural Network

    Get PDF
    The outbreak of the Corona virus or COVID-19 was still a global concern even though it has been declared an endemic in several countries in the world, including Indonesia. However, with the emergence of new variants of this virus, preventive efforts continue to be made to prevent its spread. To prevent the spread of this virus, early detection was important, especially in knowing prospective clients who are positive and reactive to this virus, thus enabling early isolation measures for prospective patients who are taking action. This identification can be carried out in public areas that are the center of community activities. In this study, an intelligent system will be developed that can detect people suspected of COVID-19 through fever and breathing problem symptoms that can provide solutions to prevent the spread of this virus. Identify these symptoms through thermography-based image processing sourced from thermal camera sensors and then look for the possibility of suspected and reactive COVID19. Furthermore, the AI model was used by the early detection system of people suspected of being positive and reactive for COVID-19 using the Deep Neural Network method. This study aims to identify symptoms of fever and respiratory infection through image processing sourced from thermal camera sensors and further diagnose prospective patients who are suspected of being positive and reactive for COVID19 using the CNN method as an intelligent system for early detection of suspected positive and reactive COVID19 patientsIn the process of testing the classification training model, the performance results in the CNN classification process have an accuracy value of more than 88%. Furthermore, a comparison was made between the CNN classification and other classifications, such as SVM, Naive Bayes and Multi-Layer Perceptron (MLP). The results obtained from this comparison have an average percentage of accuracy above 80%. MLP has the lowest accuracy among its classification methods of 83.56%. CNN has the highest accuracy value compared to other methods of 88.68%. Therefore, CNN can be chosen to be the right one for use in the COVID-19 suspect detection system through the recognition of symptoms and respiratory disorders. Based on these performance measurements, the process of detecting COVID19 suspects indicated by health symptoms can be applied to real data

    Prediction models for diagnosis and prognosis of covid-19: : systematic review and critical appraisal

    Get PDF
    Readersā€™ note This article is a living systematic review that will be updated to reflect emerging evidence. Updates may occur for up to two years from the date of original publication. This version is update 3 of the original article published on 7 April 2020 (BMJ 2020;369:m1328). Previous updates can be found as data supplements (https://www.bmj.com/content/369/bmj.m1328/related#datasupp). When citing this paper please consider adding the update number and date of access for clarity. Funding: LW, BVC, LH, and MDV acknowledge specific funding for this work from Internal Funds KU Leuven, KOOR, and the COVID-19 Fund. LW is a postdoctoral fellow of Research Foundation-Flanders (FWO) and receives support from ZonMw (grant 10430012010001). BVC received support from FWO (grant G0B4716N) and Internal Funds KU Leuven (grant C24/15/037). TPAD acknowledges financial support from the Netherlands Organisation for Health Research and Development (grant 91617050). VMTdJ was supported by the European Union Horizon 2020 Research and Innovation Programme under ReCoDID grant agreement 825746. KGMM and JAAD acknowledge financial support from Cochrane Collaboration (SMF 2018). KIES is funded by the National Institute for Health Research (NIHR) School for Primary Care Research. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, or the Department of Health and Social Care. GSC was supported by the NIHR Biomedical Research Centre, Oxford, and Cancer Research UK (programme grant C49297/A27294). JM was supported by the Cancer Research UK (programme grant C49297/A27294). PD was supported by the NIHR Biomedical Research Centre, Oxford. MOH is supported by the National Heart, Lung, and Blood Institute of the United States National Institutes of Health (grant R00 HL141678). ICCvDH and BCTvB received funding from Euregio Meuse-Rhine (grant Covid Data Platform (coDaP) interref EMR187). The funders played no role in study design, data collection, data analysis, data interpretation, or reporting.Peer reviewedPublisher PD

    Respiratory Pattern Analysis for COVID-19 Digital Screening Using AI Techniques

    Get PDF
    Corona Virus (COVID-19) is a highly contagious respiratory disease that the World Health Organization (WHO) has declared a worldwide epidemic. This virus has spread worldwide, affecting various countries until now, causing millions of deaths globally. To tackle this public health crisis, medical professionals and researchers are working relentlessly, applying different techniques and methods. In terms of diagnosis, respiratory sound has been recognized as an indicator of oneā€™s health condition. Our work is based on cough sound analysis. This study has included an in-depth analysis of the diagnosis of COVID-19 based on human cough sound. Based on cough audio samples from crowdsourced COVID data, we develop an audio-based framework, deploying traditional Machine Learning (ML), Resampling multiclass ML approach, Cost-Sensitive Multiclass ML, and Multiclass Deep Learning (DL) approaches for COVID-19 digital screening. Our experimental results indicate that the resampling Multiclass ML approach shows the best result for COVID-19 digital prescreening with an AUC of 78.77%. To the best of our knowledge, this is the first COVID-19 detection tool that uses such diverse crowdsourced and largest physician annotated COVID data that uses patientsā€™ cough sound data to predict the presence of COVID-19 in those patients by applying multiple multiclass data balance techniques for AI algorithms. Our proposed novel framework and the developed tool will assist in a) automating COVID-19 digital pre-screening, b) making the COVID test more accessible and cost-effective, c) helping to detect an infected individual before a physical COVID test, and d) reducing the risk of infecting others

    Internet and Biometric Web Based Business Management Decision Support

    Get PDF
    Internet and Biometric Web Based Business Management Decision Support MICROBE MOOC material prepared under IO1/A5 Development of the MICROBE personalized MOOCs content and teaching materials Prepared by: A. Kaklauskas, A. Banaitis, I. Ubarte Vilnius Gediminas Technical University, Lithuania Project No: 2020-1-LT01-KA203-07810
    corecore