1,989 research outputs found

    On Using Blockchains for Safety-Critical Systems

    Full text link
    Innovation in the world of today is mainly driven by software. Companies need to continuously rejuvenate their product portfolios with new features to stay ahead of their competitors. For example, recent trends explore the application of blockchains to domains other than finance. This paper analyzes the state-of-the-art for safety-critical systems as found in modern vehicles like self-driving cars, smart energy systems, and home automation focusing on specific challenges where key ideas behind blockchains might be applicable. Next, potential benefits unlocked by applying such ideas are presented and discussed for the respective usage scenario. Finally, a research agenda is outlined to summarize remaining challenges for successfully applying blockchains to safety-critical cyber-physical systems

    Machine learning and blockchain technologies for cybersecurity in connected vehicles

    Get PDF
    Future connected and autonomous vehicles (CAVs) must be secured againstcyberattacks for their everyday functions on the road so that safety of passengersand vehicles can be ensured. This article presents a holistic review of cybersecurityattacks on sensors and threats regardingmulti-modal sensor fusion. A compre-hensive review of cyberattacks on intra-vehicle and inter-vehicle communicationsis presented afterward. Besides the analysis of conventional cybersecurity threatsand countermeasures for CAV systems,a detailed review of modern machinelearning, federated learning, and blockchain approach is also conducted to safe-guard CAVs. Machine learning and data mining-aided intrusion detection systemsand other countermeasures dealing with these challenges are elaborated at theend of the related section. In the last section, research challenges and future direc-tions are identified

    Automotive Ethernet architecture and security: challenges and technologies

    Get PDF
    Vehicle infrastructure must address the challenges posed by today's advances toward connected and autonomous vehicles. To allow for more flexible architectures, high-bandwidth connections and scalability are needed to connect many sensors and electronic control units (ECUs). At the same time, deterministic and low latency is a critical and significant design requirement to support urgent real-time applications in autonomous vehicles. As a recent solution, the time-sensitive network (TSN) was introduced as Ethernet-based amendments in IEEE 802.1 TSN standards to meet those needs. However, it had hurdle to be overcome before it can be used effectively. This paper discusses the latest studies concerning the automotive Ethernet requirements, including transmission delay studies to improve worst-case end-to-end delay and end-to-end jitter. Also, the paper focuses on the securing Ethernet-based in-vehicle networks (IVNs) by reviewing new encryption and authentication methods and approaches

    Managing Negative Emotions Caused by Self-Driving

    Get PDF
    Reducing the negative emotions experienced in Self-Driving cars is key to increasing the number of users. To reduce anxiety, AI-based systems that measure the physiological response of passengers, mainly using biometric data, are used. In the future, the vehicle must be sufficiently emptical to reduce people’s distrust. The potential for hacking is still one of the main sources of anxiety about Self-Driving cars. To live with this difficulty, users need to be confronted with what machine learning means and accept that, contrary to expectations, Self-Driving cars cannot yet be 4 or 5 times safer than manual driving. To achieve the greater good – energy savings and lower emissions, efficient transport networks, greater use of digital infrastructure, safer and more usable public spaces, etc. – we need to be patient with Self-Driving vehicles

    Enabling technologies for urban smart mobility: Recent trends, opportunities and challenges

    Get PDF
    The increasing population across the globe makes it essential to link smart and sustainable city planning with the logistics of transporting people and goods, which will significantly contribute to how societies will face mobility in the coming years. The concept of smart mobility emerged with the popularity of smart cities and is aligned with the sustainable development goals defined by the United Nations. A reduction in traffic congestion and new route optimizations with reduced ecological footprint are some of the essential factors of smart mobility; however, other aspects must also be taken into account, such as the promotion of active mobility and inclusive mobility, encour-aging the use of other types of environmentally friendly fuels and engagement with citizens. The Internet of Things (IoT), Artificial Intelligence (AI), Blockchain and Big Data technology will serve as the main entry points and fundamental pillars to promote the rise of new innovative solutions that will change the current paradigm for cities and their citizens. Mobility‐as‐a‐service, traffic flow optimization, the optimization of logistics and autonomous vehicles are some of the services and applications that will encompass several changes in the coming years with the transition of existing cities into smart cities. This paper provides an extensive review of the current trends and solutions presented in the scope of smart mobility and enabling technologies that support it. An overview of how smart mobility fits into smart cities is provided by characterizing its main attributes and the key benefits of using smart mobility in a smart city ecosystem. Further, this paper highlights other various opportunities and challenges related to smart mobility. Lastly, the major services and applications that are expected to arise in the coming years within smart mobility are explored with the prospective future trends and scope

    A Systematic Literature Review on Automotive Digital Forensics: Challenges, Technical Solutions and Data Collection

    Get PDF
    A modern vehicle has a complex internal architecture and is wirelessly connected to the Internet, other vehicles, and the infrastructure. The risk of cyber attacks and other criminal incidents along with recent road accidents caused by autonomous vehicles calls for more research on automotive digital forensics. Failures in automated driving functions can be caused by hardware and software failures and cyber security issues. Thus, it is imperative to be able to determine and investigate the cause of these failures, something which requires trustable data. However, automotive digital forensics is a relatively new field for the automotive where most existing self-monitoring and diagnostic systems in vehicles only monitor safety-related events. To the best of our knowledge, our work is the first systematic literature review on the current research within this field. We identify and assess over 300 papers published between 2006 - 2021 and further map the relevant papers to different categories based on identified focus areas to give a comprehensive overview of the forensics field and the related research activities. Moreover, we identify forensically relevant data from the literature, link the data to categories, and further map them to required security properties and potential stakeholders. Our categorization makes it easy for practitioners and researchers to quickly find relevant work within a particular sub-field of digital forensics. We believe our contributions can guide digital forensic investigations in automotive and similar areas, such as cyber-physical systems and smart cities, facilitate further research, and serve as a guideline for engineers implementing forensics mechanisms
    corecore