16,014 research outputs found

    Methods for Rapidly Processing Angular Masks of Next-Generation Galaxy Surveys

    Full text link
    As galaxy surveys become larger and more complex, keeping track of the completeness, magnitude limit, and other survey parameters as a function of direction on the sky becomes an increasingly challenging computational task. For example, typical angular masks of the Sloan Digital Sky Survey contain about N=300,000 distinct spherical polygons. Managing masks with such large numbers of polygons becomes intractably slow, particularly for tasks that run in time O(N^2) with a naive algorithm, such as finding which polygons overlap each other. Here we present a "divide-and-conquer" solution to this challenge: we first split the angular mask into predefined regions called "pixels," such that each polygon is in only one pixel, and then perform further computations, such as checking for overlap, on the polygons within each pixel separately. This reduces O(N^2) tasks to O(N), and also reduces the important task of determining in which polygon(s) a point on the sky lies from O(N) to O(1), resulting in significant computational speedup. Additionally, we present a method to efficiently convert any angular mask to and from the popular HEALPix format. This method can be generically applied to convert to and from any desired spherical pixelization. We have implemented these techniques in a new version of the mangle software package, which is freely available at http://space.mit.edu/home/tegmark/mangle/, along with complete documentation and example applications. These new methods should prove quite useful to the astronomical community, and since mangle is a generic tool for managing angular masks on a sphere, it has the potential to benefit terrestrial mapmaking applications as well.Comment: New version 2.1 of the mangle software now available at http://space.mit.edu/home/tegmark/mangle/ - includes galaxy survey masks and galaxy lists for the latest SDSS data release and the 2dFGRS final data release as well as extensive documentation and examples. 14 pages, 9 figures, matches version accepted by MNRA

    Multiple-sensor integration for efficient reverse engineering of geometry

    Get PDF
    This paper describes a multi-sensor measuring system for reverse engineering applications. A sphere-plate artefact is developed for data unification of the hybrid system. With the coordinate data acquired using the optical system, intelligent feature recognition and segmentation algorithms can be applied to extract the global surface information of the object. The coordinate measuring machine (CMM) is used to re-measure the geometric features with a small amount of sampling points and the obtained information can be subsequently used to compensate the point data patches which are measured by optical system. Then the optimized point data can be exploited for accurate reverse engineering of CAD model. The limitations of each measurement system are compensated by the other. Experimental results validate the accuracy and effectiveness of this data optimization approach

    Set Unification

    Full text link
    The unification problem in algebras capable of describing sets has been tackled, directly or indirectly, by many researchers and it finds important applications in various research areas--e.g., deductive databases, theorem proving, static analysis, rapid software prototyping. The various solutions proposed are spread across a large literature. In this paper we provide a uniform presentation of unification of sets, formalizing it at the level of set theory. We address the problem of deciding existence of solutions at an abstract level. This provides also the ability to classify different types of set unification problems. Unification algorithms are uniformly proposed to solve the unification problem in each of such classes. The algorithms presented are partly drawn from the literature--and properly revisited and analyzed--and partly novel proposals. In particular, we present a new goal-driven algorithm for general ACI1 unification and a new simpler algorithm for general (Ab)(Cl) unification.Comment: 58 pages, 9 figures, 1 table. To appear in Theory and Practice of Logic Programming (TPLP

    Tactics for Reasoning modulo AC in Coq

    Get PDF
    We present a set of tools for rewriting modulo associativity and commutativity (AC) in Coq, solving a long-standing practical problem. We use two building blocks: first, an extensible reflexive decision procedure for equality modulo AC; second, an OCaml plug-in for pattern matching modulo AC. We handle associative only operations, neutral elements, uninterpreted function symbols, and user-defined equivalence relations. By relying on type-classes for the reification phase, we can infer these properties automatically, so that end-users do not need to specify which operation is A or AC, or which constant is a neutral element.Comment: 16
    • …
    corecore