5 research outputs found

    Software Defect Prediction Using AWEIG+ADACOST Bayesian Algorithm for Handling High Dimensional Data and Class Imbalance Problem

    Get PDF
    The most important part in software engineering is a software defect prediction. Software defect prediction is defined as a software prediction process from errors, failures, and system errors. Machine learning methods are used by researchers to predict software defects including estimation, association, classification, clustering, and datasets analysis. Datasets of NASA Metrics Data Program (NASA MDP) is one of the metric software that researchers use to predict software defects. NASA MDP datasets contain unbalanced classes and high dimensional data, so they will affect the classification evaluation results to be low. In this research, data with unbalanced classes will be solved by the AdaCost method and high dimensional data will be handled with the Average Weight Information Gain (AWEIG) method, while the classification method that will be used is the Naïve Bayes algorithm. The proposed method is named AWEIG + AdaCost Bayesian. In this experiment, the AWEIG + AdaCost Bayesian algorithm is compared to the Naïve Bayesian algorithm. The results showed the mean of Area Under the Curve (AUC) algorithm AWEIG + AdaCost Bayesian yields better than just a Naïve Bayes algorithm with respectively mean of AUC values are 0.752 and 0.696

    Integrasi Bagging Dan Greedy Forward Selection Pada Prediksi Cacat Software Dengan Menggunakan Naive Bayes

    Full text link
    Kualitas software ditemukan pada saat pemeriksaan dan pengujian. Apabila dalam pemeriksan atau pengujian tersebut terdapat cacat software maka hal tersebut akan membutuhkan waktu dan biaya dalam perbaikannya karena biaya untuk estimasi dalam memperbaiki software yang cacat dibutuhkan biaya yang mencapai 60 Miliar pertahun. Naïve bayes merupakan algoritma klasifikasi yang sederhana, mempunya kinerja yang bagus dan mudah dalam penerapannya, sudah banyak penelitian yang menggunakan algoritma naïve bayes untuk prediksi cacat software yaitu menentukan software mana yang masuk kategori cacat dan tidak cacat pada. Dataset NASA MDP merupakan dataset publik dan sudah banyak digunakan dalam penelitian karena sebanyak 64.79% menggunakan dataset tersebut dalam penelitian prediksi cacat software. Dataset NASA MDP memiliki kelemahan adalah kelas yang tidak seimbang dikarenakan kelas mayoritas berisi tidak cacat dan minoritas berisi cacat dan kelemahan lainnya adalah data tersebut memiliki dimensi yang tinggi atau fitur-fitur yang tidak relevan sehingga dapat menurunkan kinerja dari model prediksi cacat software. Untuk menangani ketidakseimbangan kelas dalam dataset NASA MDP adalah dengan menggunakan metode ensemble (bagging), bagging merupakan salah satu metode ensemble untuk memperbaiki ketidakseimbangan kelas. Sedangkan untuk menangani data yang berdimensi tinggi atau fitur-fitur yang tidak memiliki kontribusi dengan menggunakan seleksi fitur greedy forward selection. Hasil dalam penelitian ini didapatkan nilai AUC tertinggi adalah menggunakan model naïve bayes tanpa seleksi fitur adalah 0.713, naïve bayes dengan greedy forward selection sebesar 0.941 dan naïve bayes dengan greedy forward selection dan bagging adalah sebesar 0.923. Akan tetapi, dilihat dari rata-rata peringkat bahwa naïve bayes dengan greedy forward selection dan bagging merupakan model yang terbaik dalam prediksi cacat software dengan rata-rata peringkat sebesar 2.550

    Penggunaan Random Under Sampling Untuk Penanganan Ketidakseimbangan Kelas Pada Prediksi Cacat Software Berbasis Neural Network

    Full text link
    Penurunan kualitas software dan biaya perbaikan yang tinggi dapat diakibatkan kesalahan atau cacat pada software. Prediksi cacat software sangat penting di dalam software engineering, terutama dalam mengatasi masalah efektifitas dan efisiensi sehingga dapat meningkatkan kualitas software. Neural Network (NN) merupakan algoritma klasifikasi yang telah terbukti mampu mengatasi masalah data nonlinear dan memiliki sensitifitas yang tinggi terhadap suatu data serta mampu menganalisa data yang besar. Dataset NASA MDP merupakan data metric yang nonlinear perangkat lunak yang biasa digunakan untuk penelitian software defect prediction (prediksi cacat software). Terdapat 62 penelitian dari 208 penelitian menggunakan dataset NASA. NASA MDP memiliki kelemahan yaitu kelas yang tidak seimbang sehingga dapat menurunkan kinerja dari model prediksi cacat software. Untuk menangani ketidakseimbangan kelas dalam dataset NASA MDP adalah dengan menggunakan metode level data yaitu Random Under Sampling (RUS). RUS ditujukan untuk memperbaiki ketidakseimbangan kelas. Metode yang diusulkan untuk menangani ketidakseimbangan kelas pada Neural Network (NN) adalah penerapan RUS. Eksperimen yang diusulkan untuk membandingkan hasil kinerja Neural Network sebelum dan sesudah diterapkan metode RUS, serta dibandingkan dengan model yang lainnya. Hasil Eksperimen rata-rata AUC pada NN (0.80) dan NN+RUS (0.82). Hasil uji Wilcoxon dan Friedman menunjukan bahwa bahwa AUC NN+RUS memiliki perbedaan yang signifikan dengan NN dengan p-value wilcoxon = 0.002 dan p-value friedman = 0.003 (p<0.05). Menurut uji friedman terdapat perbedaan AUC yang signifikan antara NN+RUS dengan NN, NN+SMOTE, NB, dan C45 karena nilai p-value < 0.0001. Maka dapat disimpulkan bahwa penerapan model RUS terbukti dapat menangani masalah ketidakseimbangan kelas pada prediksi cacat software berbasis neural network

    Evaluation of Classifiers in Software Fault-Proneness Prediction

    Get PDF
    Reliability of software counts on its fault-prone modules. This means that the less software consists of fault-prone units the more we may trust it. Therefore, if we are able to predict the number of fault-prone modules of software, it will be possible to judge the software reliability. In predicting software fault-prone modules, one of the contributing features is software metric by which one can classify software modules into fault-prone and non-fault-prone ones. To make such a classification, we investigated into 17 classifier methods whose features (attributes) are software metrics (39 metrics) and instances (software modules) of mining are instances of 13 datasets reported by NASA. However, there are two important issues influencing our prediction accuracy when we use data mining methods: (1) selecting the best/most influent features (i.e. software metrics) when there is a wide diversity of them and (2) instance sampling in order to balance the imbalanced instances of mining; we have two imbalanced classes when the classifier biases towards the majority class. Based on the feature selection and instance sampling, we considered 4 scenarios in appraisal of 17 classifier methods to predict software fault-prone modules. To select features, we used Correlation-based Feature Selection (CFS) and to sample instances we did Synthetic Minority Oversampling Technique (SMOTE). Empirical results showed that suitable sampling software modules significantly influences on accuracy of predicting software reliability but metric selection has not considerable effect on the prediction

    The impact of ensemble techniques on software maintenance change prediction : an empirical study

    Get PDF
    Various prediction models have been proposed by researchers to predict the change-proneness of classes based on source code metrics. However, some of these models suffer from low prediction accuracy because datasets exhibit high dimensionality or imbalanced classes. Recent studies suggest that using ensembles to integrate several models, select features, or perform sampling has the potential to resolve issues in the datasets and improve the prediction accuracy. This study aims to empirically evaluate the effectiveness of the ensemble models, feature selection, and sampling techniques on predicting change-proneness using different metrics. We conduct an empirical study to compare the performance of four machine learning models (naive Bayes, support vector machines, k-nearest neighbors, and random forests) on seven datasets for predicting change-proneness. We use two types of feature selection (relief and Pearson’s correlation coefficient) and three types of ensemble sampling techniques, which integrate different types of sampling techniques (SMOTE, spread sub-sample, and randomize). The results of this study reveal that the ensemble feature selection and sampling techniques yield improved prediction accuracy over most of the investigated models, and using sampling techniques increased the prediction accuracy of all models. Random forests provide a significant improvement over other prediction models and obtained the highest value of the average of the area under curve in all scenarios. The proposed ensemble feature selection and sampling techniques, along with the ensemble model (random forests), were found beneficial in improving the prediction accuracy of change-proneness
    corecore