826 research outputs found

    Combining Experience Replay with Exploration by Random Network Distillation

    Full text link
    Our work is a simple extension of the paper "Exploration by Random Network Distillation". More in detail, we show how to efficiently combine Intrinsic Rewards with Experience Replay in order to achieve more efficient and robust exploration (with respect to PPO/RND) and consequently better results in terms of agent performances and sample efficiency. We are able to do it by using a new technique named Prioritized Oversampled Experience Replay (POER), that has been built upon the definition of what is the important experience useful to replay. Finally, we evaluate our technique on the famous Atari game Montezuma's Revenge and some other hard exploration Atari games.Comment: 8 pages, 6 figures, accepted as full-paper at IEEE Conference on Games (CoG) 201

    Automatic Curriculum Learning For Deep RL: A Short Survey

    Full text link
    Automatic Curriculum Learning (ACL) has become a cornerstone of recent successes in Deep Reinforcement Learning (DRL).These methods shape the learning trajectories of agents by challenging them with tasks adapted to their capacities. In recent years, they have been used to improve sample efficiency and asymptotic performance, to organize exploration, to encourage generalization or to solve sparse reward problems, among others. The ambition of this work is dual: 1) to present a compact and accessible introduction to the Automatic Curriculum Learning literature and 2) to draw a bigger picture of the current state of the art in ACL to encourage the cross-breeding of existing concepts and the emergence of new ideas.Comment: Accepted at IJCAI202

    Sample-Efficient Model-Free Reinforcement Learning with Off-Policy Critics

    Full text link
    Value-based reinforcement-learning algorithms provide state-of-the-art results in model-free discrete-action settings, and tend to outperform actor-critic algorithms. We argue that actor-critic algorithms are limited by their need for an on-policy critic. We propose Bootstrapped Dual Policy Iteration (BDPI), a novel model-free reinforcement-learning algorithm for continuous states and discrete actions, with an actor and several off-policy critics. Off-policy critics are compatible with experience replay, ensuring high sample-efficiency, without the need for off-policy corrections. The actor, by slowly imitating the average greedy policy of the critics, leads to high-quality and state-specific exploration, which we compare to Thompson sampling. Because the actor and critics are fully decoupled, BDPI is remarkably stable, and unusually robust to its hyper-parameters. BDPI is significantly more sample-efficient than Bootstrapped DQN, PPO, and ACKTR, on discrete, continuous and pixel-based tasks. Source code: https://github.com/vub-ai-lab/bdpi.Comment: Accepted at the European Conference on Machine Learning 2019 (ECML
    • …
    corecore