1,097 research outputs found

    The CoNLL 2007 shared task on dependency parsing

    Get PDF
    The Conference on Computational Natural Language Learning features a shared task, in which participants train and test their learning systems on the same data sets. In 2007, as in 2006, the shared task has been devoted to dependency parsing, this year with both a multilingual track and a domain adaptation track. In this paper, we define the tasks of the different tracks and describe how the data sets were created from existing treebanks for ten languages. In addition, we characterize the different approaches of the participating systems, report the test results, and provide a first analysis of these results

    A non-projective greedy dependency parser with bidirectional LSTMs

    Get PDF
    The LyS-FASTPARSE team presents BIST-COVINGTON, a neural implementation of the Covington (2001) algorithm for non-projective dependency parsing. The bidirectional LSTM approach by Kipperwasser and Goldberg (2016) is used to train a greedy parser with a dynamic oracle to mitigate error propagation. The model participated in the CoNLL 2017 UD Shared Task. In spite of not using any ensemble methods and using the baseline segmentation and PoS tagging, the parser obtained good results on both macro-average LAS and UAS in the big treebanks category (55 languages), ranking 7th out of 33 teams. In the all treebanks category (LAS and UAS) we ranked 16th and 12th. The gap between the all and big categories is mainly due to the poor performance on four parallel PUD treebanks, suggesting that some `suffixed' treebanks (e.g. Spanish-AnCora) perform poorly on cross-treebank settings, which does not occur with the corresponding `unsuffixed' treebank (e.g. Spanish). By changing that, we obtain the 11th best LAS among all runs (official and unofficial). The code is made available at https://github.com/CoNLL-UD-2017/LyS-FASTPARSEComment: 12 pages, 2 figures, 5 table

    Corpus Annotation for Parser Evaluation

    Full text link
    We describe a recently developed corpus annotation scheme for evaluating parsers that avoids shortcomings of current methods. The scheme encodes grammatical relations between heads and dependents, and has been used to mark up a new public-domain corpus of naturally occurring English text. We show how the corpus can be used to evaluate the accuracy of a robust parser, and relate the corpus to extant resources.Comment: 7 pages, LaTeX (uses eaclap.sty

    Dependency parsing of Turkish

    Get PDF
    The suitability of different parsing methods for different languages is an important topic in syntactic parsing. Especially lesser-studied languages, typologically different from the languages for which methods have originally been developed, poses interesting challenges in this respect. This article presents an investigation of data-driven dependency parsing of Turkish, an agglutinative free constituent order language that can be seen as the representative of a wider class of languages of similar type. Our investigations show that morphological structure plays an essential role in finding syntactic relations in such a language. In particular, we show that employing sublexical representations called inflectional groups, rather than word forms, as the basic parsing units improves parsing accuracy. We compare two different parsing methods, one based on a probabilistic model with beam search, the other based on discriminative classifiers and a deterministic parsing strategy, and show that the usefulness of sublexical units holds regardless of parsing method.We examine the impact of morphological and lexical information in detail and show that, properly used, this kind of information can improve parsing accuracy substantially. Applying the techniques presented in this article, we achieve the highest reported accuracy for parsing the Turkish Treebank

    Improving the Arc-Eager Model with Reverse Parsing

    Get PDF
    A known way to improve the accuracy of dependency parsers is to combine several different parsing algorithms, in such a way that the weaknesses of each of the models can be compensated by the strengths of others. For example, voting-based combination schemes are based on variants of the idea of analyzing each sentence with various parsers, and constructing a combined output where the head of each node is determined by "majority vote" among the different parsers. Typically, such approaches combine very different parsing models to take advantage of the variability in the parsing errors they make. In this paper, we show that consistent improvements in accuracy can be obtained in a much simpler way by combining a single parser with itself. In particular, we start with a greedy implementation of the Nivre pseudo-projective arc-eager algorithm, a well-known left-to-right transition-based parser, and we combine it with a "mirrored" version of the algorithm that analyzes sentences from right to left. To determine which of the two obtained outputs we trust for the head of each node, we use simple criteria based on the length and position of dependency arcs. Experiments on several datasets from the CoNLL-X shared task and the WSJ section of the English Penn Treebank show that the novel combination system obtains better performance than the baseline arc-eager parser in all cases. To test the generality of the approach, we also perform experiments with a different transition system (arc-standard) and a different search strategy (beam search), obtaining similar improvements in all these settings

    Using percolated dependencies for phrase extraction in SMT

    Get PDF
    Statistical Machine Translation (SMT) systems rely heavily on the quality of the phrase pairs induced from large amounts of training data. Apart from the widely used method of heuristic learning of n-gram phrase translations from word alignments, there are numerous methods for extracting these phrase pairs. One such class of approaches uses translation information encoded in parallel treebanks to extract phrase pairs. Work to date has demonstrated the usefulness of translation models induced from both constituency structure trees and dependency structure trees. Both syntactic annotations rely on the existence of natural language parsers for both the source and target languages. We depart from the norm by directly obtaining dependency parses from constituency structures using head percolation tables. The paper investigates the use of aligned chunks induced from percolated dependencies in French–English SMT and contrasts it with the aforementioned extracted phrases. We observe that adding phrase pairs from any other method improves translation performance over the baseline n-gram-based system, percolated dependencies are a good substitute for parsed dependencies, and that supplementing with our novel head percolation-induced chunks shows a general trend toward improving all system types across two data sets up to a 5.26% relative increase in BLEU
    corecore