35,642 research outputs found

    Simultaneous Learning of Nonlinear Manifold and Dynamical Models for High-dimensional Time Series

    Full text link
    The goal of this work is to learn a parsimonious and informative representation for high-dimensional time series. Conceptually, this comprises two distinct yet tightly coupled tasks: learning a low-dimensional manifold and modeling the dynamical process. These two tasks have a complementary relationship as the temporal constraints provide valuable neighborhood information for dimensionality reduction and conversely, the low-dimensional space allows dynamics to be learnt efficiently. Solving these two tasks simultaneously allows important information to be exchanged mutually. If nonlinear models are required to capture the rich complexity of time series, then the learning problem becomes harder as the nonlinearities in both tasks are coupled. The proposed solution approximates the nonlinear manifold and dynamics using piecewise linear models. The interactions among the linear models are captured in a graphical model. By exploiting the model structure, efficient inference and learning algorithms are obtained without oversimplifying the model of the underlying dynamical process. Evaluation of the proposed framework with competing approaches is conducted in three sets of experiments: dimensionality reduction and reconstruction using synthetic time series, video synthesis using a dynamic texture database, and human motion synthesis, classification and tracking on a benchmark data set. In all experiments, the proposed approach provides superior performance.National Science Foundation (IIS 0308213, IIS 0329009, CNS 0202067

    SCANN: Synthesis of Compact and Accurate Neural Networks

    Full text link
    Deep neural networks (DNNs) have become the driving force behind recent artificial intelligence (AI) research. An important problem with implementing a neural network is the design of its architecture. Typically, such an architecture is obtained manually by exploring its hyperparameter space and kept fixed during training. This approach is time-consuming and inefficient. Another issue is that modern neural networks often contain millions of parameters, whereas many applications and devices require small inference models. However, efforts to migrate DNNs to such devices typically entail a significant loss of classification accuracy. To address these challenges, we propose a two-step neural network synthesis methodology, called DR+SCANN, that combines two complementary approaches to design compact and accurate DNNs. At the core of our framework is the SCANN methodology that uses three basic architecture-changing operations, namely connection growth, neuron growth, and connection pruning, to synthesize feed-forward architectures with arbitrary structure. SCANN encapsulates three synthesis methodologies that apply a repeated grow-and-prune paradigm to three architectural starting points. DR+SCANN combines the SCANN methodology with dataset dimensionality reduction to alleviate the curse of dimensionality. We demonstrate the efficacy of SCANN and DR+SCANN on various image and non-image datasets. We evaluate SCANN on MNIST and ImageNet benchmarks. In addition, we also evaluate the efficacy of using dimensionality reduction alongside SCANN (DR+SCANN) on nine small to medium-size datasets. We also show that our synthesis methodology yields neural networks that are much better at navigating the accuracy vs. energy efficiency space. This would enable neural network-based inference even on Internet-of-Things sensors.Comment: 13 pages, 8 figure

    Multi-View Face Recognition From Single RGBD Models of the Faces

    Get PDF
    This work takes important steps towards solving the following problem of current interest: Assuming that each individual in a population can be modeled by a single frontal RGBD face image, is it possible to carry out face recognition for such a population using multiple 2D images captured from arbitrary viewpoints? Although the general problem as stated above is extremely challenging, it encompasses subproblems that can be addressed today. The subproblems addressed in this work relate to: (1) Generating a large set of viewpoint dependent face images from a single RGBD frontal image for each individual; (2) using hierarchical approaches based on view-partitioned subspaces to represent the training data; and (3) based on these hierarchical approaches, using a weighted voting algorithm to integrate the evidence collected from multiple images of the same face as recorded from different viewpoints. We evaluate our methods on three datasets: a dataset of 10 people that we created and two publicly available datasets which include a total of 48 people. In addition to providing important insights into the nature of this problem, our results show that we are able to successfully recognize faces with accuracies of 95% or higher, outperforming existing state-of-the-art face recognition approaches based on deep convolutional neural networks

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202
    corecore