2 research outputs found

    MILP model for volt-var optimization considering chronological operation of distribution systems containing DERs

    Get PDF
    This paper presents a mixed-integer linear programming model for volt-var optimization considering the chro-nological operation of distribution systems containing distributed energy resources (DERs). The proposed model describes the operation problem of capacitor banks (CBs) and voltage regulators (VRs), and it is further based on the steady-state operation during each time interval contained in typical scenarios of distribution systems. A procedure using a K-means clustering algorithm is used to select the scenarios, thus preserving the simultaneity and chronological combination of different loads and DERs. According to the formulation that we developed, the regulation devices become sensitive to downstream load variations, since we use explicit current variables to control automatic CBs, and since we include means to compensate voltage drops along distribution lines in the control of VRs. The model is validated by comparing the results obtained during several tests of two typical cases with those obtained through nonlinear power flow. The typical case studies presented in the paper highlight the good agreement between the results obtained with the linearized model and with power flow method; further, the practical results confirm that the use of typical scenarios allows representing different levels of loads and DERs, while keeping the validity and performance of the proposed model

    Modelo linearizado para problemas de planejamento da operação de sistemas de distribuição considerando incertezas

    Get PDF
    Este trabalho apresenta um modelo linearizado para o problema de planejamento da operação de sistemas de distribuição de energia elétrica (SDEE) considerando incertezas. Com o objetivo de minimizar o custo de operação de SDEE com inserção de recursos energéticos distribuídos (REDs), o modelo contempla estratégias de controle descentralizado de volt-var com bancos de capacitores e reguladores de tensão. Tais estratégias foram escolhidas visando reduzir perdas, corrigir o fator de potência, melhorar o perfil de tensão e aumentar o fator de carga do SDEE. De acordo com a formulação proposta, os dispositivos de regulação tornam-se sensíveis a variações de carga a jusante, uma vez que o modelo contempla variáveis explícitas de corrente para controlar bancos de capacitores automáticos, e compensar quedas de tensão ao longo da linha no controle de reguladores de tensão. As incertezas inerentes à presença de REDs e à demanda de energia elé- trica são representadas por cenários de operação, selecionados com o algoritmo K-means clustering, visando preservar a cronologia dos dados históricos, bem como considerar a simultaneidade entre diferentes cargas e unidades de geração, com um número reduzido de avaliações necessárias para simular a operação da rede. Além disso, a abordagem proposta contempla o efeito de propagação das incertezas nos custos de operação, os quais estão associados às perdas ativas e penalidades pela violação dos limites de tensão. O ponto de operação em regime permanente do sistema é calculado por meio de um modelo linearizado da rede. Desta forma, o modelo de otimização proposto utiliza função objetivo linear, restrições lineares e variáveis contínuas e binárias, e pode ser representado por um problema de programação linear inteira mista, que pode ser resolvido por intermé- dio de métodos exatos, com garantia de otimalidade. O modelo é validado por meio da comparação dos resultados obtidos em inúmeros testes de dois sistemas e os resultados do fluxo de carga convencional. Os resultados do modelo linearizado apresentam uma boa precisão em relação ao método do fluxo de potência não-linear. Além disso, os resultados evidenciam a importância da modelagem da cronologia da operação, permitindo representar diferentes níveis de cargas e REDs, mantendo a validade e o desempenho do modelo proposto, além permitir a avaliação do efeito da propagação das incertezas dos cenários nos custos de operação de sistemas de distribuição.This work presents a linearized model that can be applied to the planning of the operation of power distribution systems (PDS) considering uncertainties. To minimize the operation costs of distribution systems containing distributed energy resources (DERs), the model includes decentralized strategies for volt-var control which include capacitor banks (CBs) and voltage regulators (VRs). These strategies aim to reduce the power losses and also increase the power factor, thus improving the voltage levels and the PDS load factor. According to the proposed formulation, regulation devices become sensitive to downstream load variations, since inside each control strategy of VRs, the model uses explicit current variables to handle the operation of automatic CBs, and since it includes means to compensate voltage drops along distribution lines. Further, the inherent uncertainties of DERs and load demand are represented through typical operational scenarios, selected using the K-means clustering algorithm. In this way, the simultaneity and chronological combination of different loads and DERs are preserved through a set of K scenarios, which simplifies the PDS operation analysis, given that a reduced number of possible states are required. Besides, the proposed approach considers the effect of the propagation of uncertainties on the operating costs, energy losses, and violation of voltage limits. Further, the steady-state operation point is calculated through a linearized model of the network. Thus, the optimization model proposed to solve these problems uses a linear objective function, along with linear constraints, binary and continuous variables. Therefore, the optimization model can be represented as a mixed-integer linear programming problem (MILP), which in addition to guaranteed optimality of a given feasible solution allows the use of classical optimization methods to find the solution. The model is validated by comparing the results obtained during several tests of two typical cases with those obtained through nonlinear power flow. The results obtained with the linearized model are in good agreement with those obtained with the power flow method. Moreover, the results show that the use of typical scenarios allows representing different levels of loads and DERs while keeping the validity and performance of the proposed model. Finally, the use of typical scenarios also allows evaluating the effect of the propagation of uncertainties on the costs of PDS operation
    corecore