6 research outputs found

    A CAD-oriented modeling approach of frequency-dependent behavior of substrate noise coupling for mixed-signal IC design

    Get PDF
    A simple, efficient CAD-oriented equivalent circuit modeling approach of frequency-dependent behavior of substrate noise coupling is presented. It is shown that the substrate exhibits significant frequency-dependent characteristics for high frequency applications using epitaxial layers on a highly doped substrate. Using the proposed modeling approach, circuit topographies consisting of only ideal lumped circuit elements can be synthesized to accurately represent the frequency response using y-parameters. The proposed model is well-suited for use in standard circuit simulators. The extracted model is shown to be in good agreement with rigorous 3D device simulation results. 1

    Evaluation and comparison of FEM and BEM for extraction of homogeneous substrates

    Get PDF
    In the design and fabrication of micro-electronic circuits, it is necessary to simulate and predict many kinds of effects, such as substrate crosstalk, interconnect delays and others. In order to simulate and predict properly these effects, accurate and efficient substrate modeling methods are required. Substrate resistance extraction involves finding a resistance network between ports correctly describing the behaviour of the substrate. In this report we consider the problem of resistance extraction of a substrate with a homogeneous doping profile. We solve the problem by means of two discretization methods, namely the finite element method (FEM) and the boundary element method (BEM) and discuss the advantages and disadvantages of each of these methods. We particularly addresses the problem of achieving grid-independent results and characterize the cases in which one technique is better than the other

    SiGe/CMOS Millimeter-Wave Integrated Circuits and Wafer-Scale Packaging for Phased Array Systems.

    Full text link
    Phased array systems have been used to achieve electronic beam control and fast beam scanning. In the RF-phase shifting architecture, T/R modules are required for each antenna element, and have been traditionally developed using GaAs or InP technology. This thesis demonstrates that Ka-band (35 GHz) T/R modules can also be developed using the SiGe BiCMOS technology. The designed circuit blocks include a low noise amplifier, a 4-bit phase shifter, a variable gain amplifier/attenuator, and SPDT switches. The Ka-band phase shifters are designed based on CMOS switch and miniature low-pass networks for a single-ended and differential applications, and result in 3-degree rms phase error at 35 GHz. The SiGe LNA results in a peak gain of 24 dB and a noise figure of 2.9-3.1 dB with 11 mW power consumption. The CMOS variablestep attenuator has 12-dB attenuation range (1 dB step) with very low loss and phase imbalance at 10-50 GHz. A variable gain LNA is also demonstrated at 30-40 GHz for the differential phased array receiver, and has 20-dB gain and <1-degree rms phase imbalance between the 8 different gain states and 10 dB gain control. All of these circuits show state-of-the-art performance, and the phase shifter, distributed attenuator and VGA are also first-time demonstrations at Ka-band frequencies. These circuit blocks were used in a miniature SiGe/CMOS Ka-band T/R module with a dimension of 0.93x1.33mm2, and a measured performance of 19 dB receive gain, 4-5 dB NF, 9 dB transmit gain and +5.5 dBm output P1dB. The T/R module also has 4-bit phase control and 10 dB gain control in both the transmit and receive modes. To our knowledge, this is the first demonstration of a Ka-band SiGe/CMOS T/R module to-date. Finally, a DC-110 GHz Si wafer-scale packaging technique has been developed using thermo-compression bonding and is suitable for Ka-band and even W-band T/R modules. The package transition has an insertion loss of 0.1-0.26 dB at 30-110 GHz, and the package resonances and leakage were drastically reduced by grounding the sealing ring. This is the first demonstration of a wideband resonance-free (DC-110 GHz) package using silicon technology.Ph.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/58380/1/bmin_1.pd

    Combined BEM/FEM Substrate Resistance Modeling

    No full text
    For present-day micro-electronic designs, it is becoming ever more important to accurately model substrate coupling effects. Basically, either a Finite Element Method (FEM) or a Boundary Element Method (BEM) can be used. The FEM is the most versatile and flexible whereas the BEM is faster, but requires a stratified, layout-independent doping profile for the substrate. Thus, the BEM is unable to properly model any specific, layout-dependent doping patterns that are usually present in the top layers of the substrate, such as channel stop layers. This paper describes a way to incorporate these doping patterns into our substrate model by combining a BEM for the stratified doping profiles with a 2D FEM for the top-level, layout-dependent doping patterns, thereby achieving improved flexibility compared to BEM and improved speed compared to FEM. The method has been implemented in the SPACE layout to circuit extractor and it has been successfully verified with two other tools

    Theoretical and Practical Validation of Combined BEM/FEM Substrate Resistance Modeling Abstract

    No full text
    In mixed-signal designs, substrate noise originating from the digital part can seriously influence the functionality of the analog part. As such, accurately modeling the properties of the substrate as a noise-propagator is becoming ever more important. A model can be obtained through the Finite Element Method (FEM) or the Boundary Element Method (BEM). The FEM performs a full 3D discretization of the substrate, which makes this method very accurate and flexible but also slow. The BEM only discretizes the contact areas on the boundary of the substrate, which makes it less flexible, but significantly faster. A combination between BEM and FEM can be efficient when we need flexibility and speed at the same time. This paper briefly describes the BEM and the FEM and their combination, but mainly concentrates on the theoretical validation of the combined method and the experimental verification through implementation in the SPACE layout to circuit extractor and comparison with commercial BEM and FEM tools.
    corecore