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Evaluation and Comparison of FEM and BEM for Extraction of
Homogeneous Substrates

M. V. Ugryumova, W. H. A. Schilders
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Netherlands (phone: 31-40-2478388; e-mail: m.v.ugryumova@tue.nl).

SUMMARY

In the design and fabrication of micro-electronic circuits, it is necessary to simulate and predict many
kinds of effects, such as substrate crosstalk, interconnect delays and others. In order to simulate and predict
properly these effects, accurate and efficient substrate modeling methods are required. Substrate resistance
extraction involves finding a resistance network between ports correctly describing the behaviour of the
substrate. In this report we consider the problem of resistance extraction of a substrate with a homogeneous
doping profile. We solve the problem by means of two discretization methods, namely the finite element
method (FEM) and the boundary element method (BEM) and discuss the advantages and disadvantages of
each of these methods. We particularly addresses the problem of achieving grid-independent results and
characterize the cases in which one technique is better than the other.

1. INTRODUCTION

Nowadays digital technologies operate with frequencies of the order of gigahertz (GHz). This
results into non-negligible delays and field couplings which may be critical for an integrated circuit
(IC) performance. Figure 1 schematically shows a vertical cross section of an IC. It consists of
three layers: interconnect layout, layout with devices, and substrate. Ideally interconnect is an
ideal conductor, devices (transistors, diodes) are ideal switches, and substrate is an ideal insulator.
However when operating at high frequencies, interconnect causes delays, and therefore it cannot
be treated as an ideal conductor; transistors are not ideal switches; and the substrate may cause
crosstalk between different parts of the IC. This non-ideal behaviour is called parasitics.

Figure 1. Layers of IC: 1. interconnect, 2. devices, 3. substrate

At low frequencies these parasitic effects are usually negligible, because switching delay in the
transistors and delays along the interconnect are much smaller in comparison to the speed of the
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signal [14]. Therefore, to simulate and predict properly impact of parasitic effects, accurate and
efficient modeling methods are required.

To exploit the underlying physics of IC one can subdivide the whole modeling problem of IC
into three subproblems: modeling of interconnect, modeling of devices, and modeling of substrate.
We recall that modeling of interconnect [1][13] and devices [7] is a field of research on its own,
and it is out of the scope of this report. In this report we discuss the problem of modeling of
homogeneous substrates. We study the advantages and disadvantages of the popular discretization
methods, namely FEM and BEM, and compare them on the qualitative level. We particularly
addresses the problem of achieving grid-independent results and characterize the cases in which
one technique is better than the other.

This report is build up as follows. In Section 2 we derive the Laplace equation from the Maxwell’s
equations and present a corresponding boundary value problem which has to be solved in order to
obtain a resistance network. In Sections 3 and 4 we review FEM and BEM and show construction
of corresponding conductance matrices which describe the resistive network by each method. Then,
comparison of both methods for a 2D substrate is considered in Section 5, while comparison for a
3D case is presented in Section 6. We specially put emphasis on discretization and the problem of
obtaining grid-independent results.

2. MODELING OF SUBSTRATE

Semiconductor behaviour can be described by the semiconductor equations which are mostly
relevant for the modeling of devices. Nevertheless the global characteristics of the substrate can
be captured with sufficient accuracy by taking into account dominant factors of the semiconductor
behaviour. In this report the modeling approach is aimed at modeling the global behaviour of a
homogeneous substrate and therefore does not take into account the full semiconductor equations.

The Maxwell’s equations for harmonic fields are given by [11]

∇× E = 𝑖𝜔B (Faraday’s law), (1)
∇× H = J − 𝑖𝜔D (Ampere’s law), (2)
∇ ⋅ B = 0 (Gauss’s law), (3)
∇ ⋅ D = 𝜌, (4)

where E is the electric field, H is the magnetic field, B is the magnetic induction, D is the electric
displacement, J is the current density, 𝜌 is the charge density. Associated with the Maxwell’s
equations, we have a continuity equation:

∇ ⋅ J − 𝑖𝜔𝜌 = 0. (5)

We consider linear, homogenous, and isotropic media, such that

D = 𝜖E, B = 𝜇H, J = 𝜎E,

where the scalars 𝜖 (permittivity), 𝜇 (permeability) and 𝜎 (conductivity) are assumed to be constant.
Since describing the substrate via the Maxwell’s equations (1)–(4) is unnecessary complicated,

we consider the following assumptions [14]: 1) the fields are quasi-static, 2) the domain does not
contain fixed charges or current sources, and 3) the domain is assumed to be purely conductive.

The quasi-static assumption means that the electric and magnetic fields are highly localized within
the circuit elements [17]. Although the electric displacement D is dominant within a capacitor,
it is negligible outside, so that Ampere’s law (2) can neglect variations of D making the current
divergence free, i.e.,

∇ ⋅ J = 0. (6)

This means that the algebraic sum of all currents flowing into or out of a node is zero, which is
Kirchhoff’s current law. Similarly, variations of magnetic induction B in (1) is assumed negligible
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outside of inductors, so the electric field is curl free, i.e., ∇× E = 0. In fact this is Kirchhoff’s
voltage law that the algebraic sum of voltage drops is zero, i.e.,

E = −∇𝑢, (7)

where 𝑢 denotes the potential.

2.1. Mathematical formulation of the problem

An example of a substrate is shown is Figure 2. It consists of a domain Ω with a conductivity 𝜎, and
ideally conducting terminals (black quadrilateral elements) on top of the substrate. Boundary of the
substrate includes terminal areas (Γ1) and non-terminal area (Γ2).

Ω

Γ1

Γ2

Figure 2. A substrate with three contacts on the top.

To derive the Laplace equation, we note that a distributed formulation of the Ohm’s law can be
written as

J = 𝜎E. (8)

Substituting (7) into (8) and substituting the result into (6), we obtain the following differential
equation

∇ ⋅ (𝜎∇𝑢) = 0. (9)

If the conductivity in the domain is homogeneous, i.e., 𝜎 is constant, then (9) becomes the Laplace
equation

𝜎∇2𝑢 = 0. (10)

Since we have to find a resistive network which describes a homogeneous substrate, one has to solve
the Laplace equation with appropriate boundary conditions. The boundary conditions are chosen
such that current can enter or leave the domain through the contact areas while remaining boundary
has insulating properties. This requires to define Dirichlet boundary conditions on the contact areas,
i.e.,

𝑢 = 𝑢̄ on Γ1, (11)

and homogeneous Neumann boundary conditions on the remaining boundary, i.e.,

∂𝑢

∂n
= 𝑞 = 0 on Γ2, (12)

where n is the normal to the boundary Γ = Γ1

∪
Γ2 (note that Γ1

∩
Γ2 = 0). There is a connection

between ∂𝑢
∂n and the normal component of the current density, 𝐽𝑛, through the contact:

𝐽𝑛 = 𝜎
∂𝑢

∂n
on Γ2. (13)

Homogenous Neumann boundary condition implies that 𝐽𝑛 = 0, i.e., no current flowing through
the boundary Γ2. Extraction of the network requires to solve the Laplace equation with the above
boundary conditions. Further we will consider two methods to solve the Laplace equation: FEM and
BEM. We will compare both methods on a qualitative level.
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3. THE FINITE ELEMENT METHOD

FEM is a popular technique for substrate modeling [6][2]. We will solve the 2D boundary value
problem (9)–(12) by FEM and show the process of extraction of resistance network. First, we
construct the weak formulation of the problem by defining the weighted residual of (10) for a single
element with domain Ωℎ. The element residual takes the form:

𝑟ℎ = 𝜎

(
∂2𝑢

∂𝑥2
+

∂2𝑢

∂𝑦2

)
.

Since the numerical solution 𝑢 is generally not identical to the exact solution, 𝑟ℎ is nonzero. Our
objective is to minimize 𝑟ℎ in a weighted sense. To achieve this, we first multiply 𝑟ℎ with a weighted
function 𝜔, then integrate the result over the area of the element, and then set the integral to zero:

𝜎

∫
Ωℎ

𝜔

(
∂2𝑢

∂𝑥2
+

∂2𝑢

∂𝑦2

)
𝑑Ωℎ = 0. (14)

Taking into account that 𝜔 ∂2𝑢
∂𝑥2 = ∂

∂𝑥 (𝜔
∂𝑢
∂𝑥 )− ∂𝜔

∂𝑥
∂𝑢
∂𝑥 , (14) can be rewritten as

𝜎

∫
Ωℎ

(
∂

∂𝑥

(
𝜔
∂𝑢

∂𝑥

)
+

∂

∂𝑦

(
𝜔
∂𝑢

∂𝑦

))
𝑑Ωℎ − 𝜎

∫
Ωℎ

(
∂𝜔

∂𝑥

∂𝑢

∂𝑥
+

∂𝑢

∂𝑦

∂𝜔

∂𝑦

)
𝑑Ωℎ = 0. (15)

The Green’s theorem states that the area integral of the divergence of a vector quantity equals to the
total outward flux of the vector quantity through the contour that bounds the area, i.e.,∫

Ωℎ

(
∂𝐴𝑥

∂𝑥
+ 𝜎

∂𝐴𝑦

∂𝑦

)
𝑑Ωℎ =

∮
Γℎ

(𝐴𝑥 +𝐴𝑦) ⋅ a𝑛𝑑𝑙,

where a𝑛 = 𝑎𝑥n𝑥 + 𝑎𝑦n𝑦 is the outward unit vector that is normal to the boundary of the element.
Applying Green’s theorem to the first integral of (15), one obtains:∫

Ωℎ

(
∂𝜔

∂𝑥

∂𝑢

∂𝑥
+

∂𝑢

∂𝑦

∂𝜔

∂𝑦

)
𝑑Ωℎ =

∮
Γℎ

𝜔

(
∂𝑢

∂𝑥
n𝑥 +

∂𝑢

∂𝑦
n𝑦

)
𝑑𝑙. (16)

According to Galerkin approach, the weight function 𝜔 must belong to the same set of basis
functions that are used to interpolate 𝑢. In general we interpolate 𝑢 with the set of Lagrange
polynomials as

𝑢 =

𝑛∑
𝑖=1

𝑁𝑖(𝑥, 𝑦)𝑢
𝑒
𝑖 , (17)

where 𝑁𝑗 are the corresponding basis functions based on Lagrange polynomials (interpolation
functions), 𝑛 is the number of local nodes per element, and 𝑢𝑒

𝑖 are unknown coefficients at a single
mesh element. Substituting (17) into (16), and setting

𝜔 = 𝑁𝑖, 𝑖 = 1, . . . 𝑛

the weak form of the differential equation becomes∫
Ωℎ

(
∂𝑁𝑖

∂𝑥

𝑛∑
𝑗=1

𝑢𝑒
𝑗

∂𝑁𝑗

∂𝑥
+

∂𝑁𝑖

∂𝑦

𝑛∑
𝑗=1

𝑢𝑒
𝑗

∂𝑁𝑗

∂𝑦

)
𝑑Ωℎ =

∮
Γℎ

𝑁𝑖

(
∂𝑢

∂𝑥
n𝑥 +

∂𝑢

∂𝑦
n𝑦

)
𝑑𝑙, 𝑖 = 1, . . . , 𝑛,

and can be rewritten in the matrix form as follows

𝑌ℎuℎ = iℎ, (18)



EVALUATION AND COMPARISON OF FEM AND BEM FOR EXTRACTION OF HOMOGENEOUS SUBSTRATES5

where

𝑌ℎ,𝑖𝑗 =

∫
Ωℎ

(
∂𝑁𝑖

∂𝑥

∂𝑁𝑗

∂𝑥
+

∂𝑁𝑖

∂𝑦

∂𝑁𝑗

∂𝑦

)
𝑑Ωℎ, (19)

uℎ =
(
𝑢ℎ,1 . . . 𝑢ℎ,𝑛

)𝑇
, (20)

iℎ,𝑖 =
∮
Γℎ

𝑁𝑖

(
∂𝑢

∂𝑥
n𝑥 +

∂𝑢

∂𝑦
n𝑦

)
𝑑Ωℎ, 𝑖, 𝑗 = 1, . . . , 𝑛. (21)

The above 𝑌ℎ, uℎ and iℎ correspond to a stamp which represents a single finite element. For example,
if the finite element is triangular with linear basis functions, 𝑌ℎ becomes 3 by 3 matrix and vector
uℎ (unknown) defines three voltages at the nodes of the element. If finite element has no edges at
the boundary, then integral (21) equals zero. This follows from the conservation current law which
states that

∮
Γℎ

n ⋅ J𝑑𝑙 =
∫
Ωℎ

∇ ⋅ J𝑑𝑠 = 0. The linear basis functions imply that each edge in the FEM
discretization is equivalent to a resistance network which is schematically presented in Figure 3.

Figure 3. Left triangular from FEM discretization represents resistance network on the right.

To evaluate the integrals in (19) and (21), it is necessary to change the variables of integration. In
other words, instead of integrating over the triangular element on the regular coordinate system, it
is more convenient that the integration is carried out on the master triangle which lies on the natural
coordinate system. Details about evaluating integral (19) for linear triangular elements can be found,
for instance, in [6][12].

Based on the stamp data for a single element, the global matrix of the whole domain Ω can be
constructed. Let 𝑁 denote the number of nodes in the global discretization. In this case one can
define a system

𝑌 U = I, (22)

where 𝑌 ∈ ℝ𝑁×𝑁 is symmetric matrix with elements defined in (19), I ∈ ℝ𝑁 contains elements
defined in (21), and U ∈ ℝ𝑁 denotes vector of potentials at the nodes. Note, that for interior edges
of finite elements the contribution of (21) is zero.

Since in triangular mesh, each element interacts only with neighboring elements, not all entries of
𝑌 are filled, which makes 𝑌 a sparse matrix. Therefore the resulting resistance network is large and
sparse. However, only a small number of FEM nodes belong to the contact areas, while the rest of
FEM nodes are internal nodes. Since internal nodes are not connected to other physical structures,
then the FEM network has to be solved such that the internal nodes are eliminated and only the
nodes at the contacts remain. Below we show how it can be done.

3.0.1. Conductance matrix Since not all nodes belong to the contact areas, we subdivide all nodes
into two subsets. The first subset includes nodes at the contacts, i.e., external nodes or ports (index
𝑝), the second subset includes all other nodes, i.e., internal nodes (index 𝑖). Thus, we rewrite equation
(22) in a block matrix form as (

𝑌11 𝑌12

𝑌21 𝑌22

)(
U𝑝

U𝑖

)
=

(
I𝑝
I𝑖

)
, (23)

where 𝑌11 ∈ ℝ𝑁𝑝×𝑁𝑝 , 𝑌12 ∈ ℝ𝑁𝑝×𝑁𝑖 , and 𝑌22 ∈ ℝ𝑁𝑖×𝑁𝑖 , 𝑁𝑝 denotes the number of nodes located
at the contacts, and 𝑁𝑖 denotes the number of remaining nodes. To define a total potential at each
contact area, we introduce an incidence matrix 𝐹 ∈ {1,−1, 0}𝑁𝑝×𝑁𝑐 (𝑁𝑐 is the number of contacts)
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as follows [6]

𝐹𝑖𝑗 =

{
1 if node 𝑖 is on terminal 𝑗
0 otherwise.

Let U𝑐 ∈ ℝ𝑁𝑐 denote potentials at the contact areas, and U𝑖 ∈ ℝ𝑁𝑖 denote potentials at the nodes
located outside of the contacts. Then (23) can be rewritten as(

𝐹𝑇𝑌11𝐹 𝐹𝑇𝑌12

𝑌21𝐹 𝑌22

)(
U𝑐

U𝑖

)
=

(
I𝑐
0

)
, (24)

where I𝑐 ∈ ℝ𝑁𝑐 is a total current at the contacts. Eliminating U𝑖 one obtains

I𝑐 = (𝐹𝑇𝑌11𝐹 − 𝐹𝑇𝑌12𝑌
−1
22 𝑌21𝐹 )︸ ︷︷ ︸

𝐺𝑠

U𝑐,

where 𝐺𝑠 is symmetric positive semidefinite conductance matrix which contains total path
resistances of the resistance network.

4. THE BOUNDARY ELEMENT METHOD

We will solve the 2D boundary value problem (10)–(12) by BEM and show the process of extraction
of resistance network. BEM is based on an integral form of the Laplace equation [3][16]. Taking
into account Dirichlet and Neumann boundary conditions, the integral form of the Laplace equation
has the form ∫

Ω

(∇2𝑢)𝜔𝑑Ω−
∫
Γ2

(
∂𝑢

∂n
− 𝑞

)
𝜔𝑑Γ +

∫
Γ1

(𝑢− 𝑢̄)
∂𝜔

∂n
𝑑Γ = 0, (25)

where 𝜔 denotes an arbitrary weighting function which is continuous up to the second derivative.
Further we will choose 𝜔 equal to the Green’s function. The Green’s function 𝐺(𝑝, 𝑞) is a
fundamental solution of the Laplace equation:

∇2𝐺(𝑝, 𝑞) + Δ𝑝 = 0, (26)

where Δ𝑝 represents a Dirac Delta function which tends to infinity at the point 𝑥 = 𝑥𝑝 and is equal
to zero anywhere else. The Green’s function 𝐺(𝑝, 𝑞) can be viewed as the function describing
the potential at a position 𝑝, resulting from a unit point charge placed at position 𝑞. For the 2D
homogeneous case of the Laplace equation, the Green’s function is

𝐺(𝑝, 𝑞) =
1

2𝜋
ln

1

𝑟
,

and for the 3D case
𝐺(𝑝, 𝑞) =

1

4𝜋𝑟
,

where 𝑟 = ∣𝑝− 𝑞∣. Let the weighting function 𝜔 be chosen as the Green’s function. Substituting
𝜔 = 𝐺(𝑝, 𝑞) into (25), and integrating by parts twice, we obtain∫

Ω

(∇2𝐺)𝑢𝑑Ω =

∫
Γ2

𝑢
∂𝐺

∂n
𝑑Γ2 −

∫
Γ2

𝑞𝐺𝑑Γ2 −
∫
Γ1

∂𝑢

∂n
𝐺𝑑Γ1 +

∫
Γ1

𝑢̄
∂𝐺

∂n
𝑑Γ1. (27)

From (26) it follows that ∫
Ω

(∇2𝐺(𝑝, 𝑞))𝑢𝑑Ω = −
∫
Ω

Δ𝑝𝑢𝑑Ω = −𝑢𝑝. (28)

Substituting (28) into (27) we obtain

𝛼𝑢𝑝 = −
∫
Γ2

𝑢
∂𝐺

∂n
𝑑Γ2 +

∫
Γ2

𝑞𝑢𝑑Γ2 +

∫
Γ1

∂𝑢

∂n
𝐺𝑑Γ1 −

∫
Γ1

𝑢̄
∂𝐺

∂n
𝑑Γ1, (29)
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where 𝛼 = 0.5 if 𝑝 ∈ Γ, 𝛼 = 1 if 𝑝 ∈ Ω, and 𝛼 = 0 if 𝑝 /∈ Ω. Equation (29) shows that potential at
the point 𝑝, i.e., 𝑢𝑝, can be computed as a sum of integrals over the boundaries Γ1 and Γ2. This
equation is the integral formulation of the Laplace equation and it is the base of the BEM for the
Laplace equation.

Now, since we consider the case of homogeneous Neumann boundaries, i.e., 𝑞 = ∂𝑢
∂n = 0, the

second integral of the right hand-side of equation (29) vanishes. Thus, to solve equation (29),
integration over the whole boundary of Ω, i.e., Γ1

∪
Γ2 is required. Solution procedure of (29)

will be considered in the next subsection.
Nevertheless some improvement in solving (29) is possible. By demanding an extra condition for

the fundamental solution 𝐺(𝑝, 𝑞)

∂𝐺(𝑝, 𝑞)

∂n
= 0 on Γ1 and Γ2, (30)

equation (29) is transformed into a simple equation:

𝛼𝑢𝑝 =

∫
Γ1

𝑞𝐺(𝑝, 𝑞)𝑑Γ1. (31)

The important note about (31) is that it involves integration over the contact regions and not over
the whole boundary. Green’s function which satisfies (30) has been derived in [16] and incorporated
into the advanced layout-to-circuit extractor SPACE [10] [5].

4.0.2. Discretization and Solution We will subdivide the boundary of substrate including the
contacts into 𝑁 elements which correspond to constant basis functions. It is possible to use elements
which correspond to piecewise linear or quadratic basis functions. However these approaches are
more complex from point of view of implementation, therefore we will not consider them in this
report. Thus the values of 𝑢 and ∂𝑢

∂n are assumed to be constant over each element and equal to the
value of the node which located in the middle of the element. The integral equation (29) can then
be written for a given point 𝑝 ∈ Γ as follows

𝑢𝑝

2
+

𝑁∑
𝑗=1

∫
Γ2,𝑗

𝑢
∂𝐺(𝑝, 𝑞)

∂n
𝑑Γ =

𝑁∑
𝑗=1

∫
Γ1,𝑗

𝐺(𝑝, 𝑞)
∂𝑢

∂n
𝑑Γ. (32)

Since 𝑢 and ∂𝑢
∂n are constant over each element, they can be taken out from the integrals. Thus (32)

takes the form
𝑢𝑝

2
+

𝑁∑
𝑗=1

𝐻̄𝑝𝑗𝑢𝑗 =
∑
𝑗=1

𝐾𝑝𝑗𝑞𝑗 , (33)

where
𝐻̄𝑝𝑗 =

∫
Γ𝑗

𝜎
∂𝐺(𝑝, 𝑞)

∂n
𝑑Γ, 𝐾𝑝𝑗 =

∫
Γ𝑗

𝜎𝐺(𝑝, 𝑞)𝑑Γ, and 𝑞 =
∂𝑢

∂n
.

We can rewrite (33) in the more compact form

𝑁∑
𝑗=1

𝐻𝑝𝑗𝑢𝑗 =
∑
𝑗=1

𝐴𝑝𝑗𝑞𝑗 , (34)

where 𝐻𝑝𝑗 = 𝐻̄𝑝𝑗 if 𝑖 ∕= 𝑗 or 𝐻𝑝𝑗 = 𝐻̄𝑝𝑗 + 1
2 if 𝑖 = 𝑗. Thus (34) becomes a system of the form:

𝐻U = 𝑀Q, (35)

where 𝐻 ∈ ℝ𝑁×𝑁 and 𝑀 ∈ ℝ𝑁×𝑁 , U ∈ ℝ𝑁 contains potentials at Γ2 and Q ∈ ℝ𝑁 contains
current fluxes at Γ1. Since at some nodes, values of 𝑢 and ∂𝑢

∂n are known from the boundary
conditions, we rearrange the system of equations in such a way that all unknowns are on the left
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side. The system will take the form
𝐴X = B, (36)

where 𝑋 contains unknown values of 𝑢 and ∂𝑢
∂n on the boundary Γ. Solving this system of equations,

one can obtain the values of 𝑢 and ∂𝑢
∂n at the boundary nodes where boundary conditions 𝑞 and 𝑢̄,

respectively, were specified. Once the system is solved, it is also possible to compute values of 𝑢
and its derivatives at any point 𝑝 inside of the domain Ω. The values of 𝑢’s are computed at any
internal point 𝑝 using formula (29) which can be written as

𝑢𝑝 =

∫
Γ1

∂𝑢

∂n
𝐺𝑑Γ1 −

∫
Γ2

𝑢
∂𝐺

∂n
𝑑Γ2. (37)

The values of internal flux, for instance, in the direction 𝑥, i.e., ∂𝑢
∂𝑥 , is calculated by carrying out

derivative on (37), i.e.,(
∂𝑢

∂𝑥

)
𝑝

=

∫
Γ1

∂𝑢

∂𝑥

(
∂𝐺

∂𝑥

)
𝑝

𝑑Γ1 −
∫
Γ2

𝑢

(
∂𝐺

∂𝑥

)
𝑝

𝑑Γ2. (38)

However for the sake of resistance extraction, it is not required to compute values of 𝑢 and its
derivatives at the points inside of the domain Ω. The values of 𝑢 and ∂𝑢

∂n at the boundaries are only
required which can be achieved by solving the system (36).

Note, that matrix 𝐴 in (36) has the size of the number of boundary elements and it is dense, while
in case of FEM discretization matrix 𝑌 in (22) is sparse and has the size of the number of interior
nodes of the finite elements.

4.0.3. Admittance matrix In case of substrate modeling the goal is to obtain an admittance matrix
which describes the behaviour of the substrate with respect to the contact areas. Here we will show
how to construct such admittance matrix from the discretized equations obtained with BEM. This
admittance matrix can be later interpreted as a resistance network. From (35) we obtain

Q = 𝑀−1𝐻U,

where Q collects all element current densities, U collects all element potentials. The matrix

𝑌𝑒 = 𝑀−1𝐻 (39)

denotes the admittance matrix between all boundary elements with respect to a virtual reference
node, which represents potential at infinity.

Computing 𝑌𝑒 ∈ ℝ𝑁×𝑁 requires solving 𝑁 times a system of liner equations of the form
𝑀x = h𝑖 for x, where h𝑖 denotes the 𝑖-th column of 𝐻 matrix. Using 𝐿𝑈 decomposition of 𝑀 ,
an approximate complexity to compute 𝑌𝑒 is 𝑂(𝑁3) +𝑁𝑂(𝑁2). However, using the windowing
technique, which is based on the Schur inversion algorithm [16] [9] and takes into account only
influences between boundary elements that are relatively close to each other, it is possible to
compute an approximate inverse of 𝑀 in only 𝑂(𝑁) time.

To extract the admittance matrix for the contacts, we introduce an incidence matrix 𝐹 ∈
{1,−1, 0}𝑁×𝑁𝑐 , where 𝑁𝑐 denotes the number of contacts, such that:

𝐹𝑖𝑗 =

{
1 if 𝑖th boundary element belongs to the 𝑗th contact
0 otherwise.

Thus admittance matrix which represents the network between all contacts with respect to the virtual
reference node becomes 𝑌 ∈ 𝑅𝑁𝑐×𝑁𝑐 :

𝑌 = 𝐹𝑇𝑌𝑒𝐹,

which is symmetric dense matrix with positive diagonal entries and negative off-diagonal entries.
By eliminating the reference node, one obtains a conductance matrix of resistance network which
contains path resistances between all the contacts.
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4.0.4. Example Let two contacts be defined at the top of the substrate. Thus 𝑌 is a 2× 2 symmetric
admittance matrix:

𝑌 =

(
𝑦 −𝑦𝑠

−𝑦𝑠 𝑦

)
,

which corresponds to the network presented in Figure 4. Eliminating the reference node, we obtain
a conductance matrix which describes the network between the contact:

𝐺 =
1

2

(
𝑦 + 𝑦𝑠 −𝑦 − 𝑦𝑠

−𝑦 − 𝑦𝑠 𝑦 + 𝑦𝑠

)
.

Thus, the path resistance between the contacts equals 2
𝑦+𝑦𝑠

.

1

y−ys

1

y−ys

1

ys

reference node

contact 1 contact 2

Figure 4. Resistor network with two substrate contacts and a reference node.

We note that there exists other way to compute the path resistance between the contacts. By
setting 𝑢 = 𝑢0 at the left contact, 𝑢 = 0 at the right contact, and solving the Laplace equation, the
path resistance between the contacts can be computed as

𝑅𝑡 =
𝑢0

𝐽𝑛
=

𝑢0

𝜎
∑

𝑘 𝑙𝑘𝑝𝑘
,

where 𝑙𝑘 denotes the length of the 𝑘th boundary element at the right contact and 𝑝𝑘 denotes current
flux flowing through the 𝑘th boundary element. In other words, to compute the path resistance
between the contacts, one has to set initial potential 𝑢0 at one of the contact and ground another
contact. By computing the current flux 𝐽𝑛 through the second contact, the path resistance can be
defined as a ratio 𝑢0

𝐽𝑛
.

5. A 2D CASE STUDY

We will further compare the performance and characteristics of both methods, FEM and BEM,
through the following example.

We consider a 2D substrate, in Figure 5, 1000× 350 𝜇𝑚 with two contacts 10 𝜇𝑚 in length at
a distance of 30 𝜇𝑚 on the top the substrate. The conductivity of the substrate is 10 𝑆/𝑚. A unite
voltage was applied to the left contact, zero voltage was set at the right contact, and no current flow
through non-contact areas, i.e., ∂𝑢

∂n = 0.
If one is interested in getting to know values of potentials inside of the domain at many points,

than FEM is the most suitable method because it discretizes the whole domain and solution is
found at each discretization point. If one is only interested in the solution at the boundary, which is
required, for instance, for extraction of resistance network, then BEM is excellent alternative. We
will study the performance of BEM and FEM for extracting a resistance network for the substrate
presented in Figure 5.

First, we solve the Laplace equation (10) with corresponding boundary conditions by FEM with
very fine discretization over the whole domain. We obtain solution for potential presented in Figure
6. It can be seen that it contains a high voltage zone below the left contact and a low voltage
zone around the second contact. The figure also includes current streamlines which show that the
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Figure 5. Substrate with two contacts C1 and C2, each of the size 10𝜇𝑚. Distance values are in 𝜇𝑚.

current flows from the left contact to the right one. Note, that conductivity 𝜎 does not influence on
the behaviour of the potential but it influences on the normal component of the current 𝐽𝑛, going
through the contacts:

𝐽𝑛
𝜎

=
∂𝑢

∂n
.

Second, we solve the Laplace equation (10) with corresponding boundary conditions by BEM
implemented in Matlab [8]. We recall that for a 2D homogeneous domain, the Green’s function has
the form

𝐺(𝑝, 𝑞) =
1

2𝜋
ln

(
1

𝑟

)
.

Since the normal derivative of 𝐺(𝑝, 𝑞) does not vanish on the boundary, the left sum of integrals in
(32) cannot be neglected, and, therefore, we have to discretize the whole boundary of the substrate.
The mesh at the contacts and between the contacts has been made finer than at the other parts of the
substrate.

Figure 7 shows a comparison of BEM and FEM solutions for the potential on the upper side of
the substrate, where contacts are located. To capture the behaviour of the potential by BEM, a coarse
mesh at the boundaries was sufficient. From the figure we observe that both solutions by BEM and
FEM coincide well.

In Figure 8 we show comparison of BEM and FEM solutions of the normal component of the
current 𝐽𝑛 at the top part of the substrate (at other parts current stays zero due to the boundary
conditions). Due to the very sharp variations of the current at the contacts, we required a fine mesh
for both BEM and FEM to obtain an agreement between the solutions. In general we observe that

Figure 6. Potential distribution and streamlines of current in the 2D substrate

the potential does not require a very fine mesh for an adequate description, while current requires
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Figure 8. Solutions of current at the top
boundary of the substrate by BEM and FEM.

fine discretization, especially close to the contacts. An accurate value of current at the boundary is
crucial to determine the path resistance between the contacts.

Now we will proceed by analyzing the requirements of both methods (BEM and FEM) for having
an accurate solution. To this extend, we use the following technique. We analyze the dependence of
the computed value of the path resistance on the mesh size. When a mesh refinement conducts to a
very small change in the resistance value, we can expect the solution to be mesh independent.

Figure 9 shows a relation between the number of FEM and BEM mesh elements and the computed
value of the path resistance between the contacts. The number of mesh elements is directly related
to the size of linear system to be solved for both cases. At this point, we should recall that the
smaller matrix size for BEM does not necessarily implies faster computations than with FEM. From
this plot we can notice that BEM requires a much smaller amount of elements than FEM for the
computed value of path resistance to converge. This is, of course, due to the fact that BEM only
requires to discretize the boundary, while FEM discretizes the whole 2D domain. Note, that we
could not experience convergence of path resistance obtained by FEM with uniform refinement due
to the lack of memory at the machine where computations were performed. To be able to compare
the performance of BEM and FEM (with adaptive refinement) we measured the relative variation of
path resistance based on the data of Figure 9. For instance, if further refinement provides a variation
of path resistance, less than 1 %, then it means that we have reached two significant digits. This
relative variation can be considered as a quality measure for the numerical solution. In Figure 10,
we show a plot of the relative variation for the path resistance versus the computation time. It can be
seen that solution computed with BEM converges at least five times faster than solution computed
with FEM. For example, to achieve relative variation of path resistance of the order 10−1, BEM
requires 0.66 sec., while FEM requires 3.7 sec.

Though BEM already performs better than FEM for extracting the resistance network of
homogeneous substrate, there is a room for interesting improvements. Some possibilities are among
the following.

As we mentioned before, one of the most important drawbacks of BEM is the fact that the
discretized matrices in (35) are dense, and therefore computing inverse of 𝑀 is expensive (𝑂(𝑛3)).
However, the windowing technique [16][9], which is based on the Schur algorithm for approximate
matrix inversion, can help to reduce complexity. The Schur algorithm requires the matrix 𝑀 to be
known only partly, in a staircase (band) around the main diagonal. The band structure corresponds to
interactions between closely coupled boundary elements. The approximate inversion then implicitly
estimates the entries of the matrix inside the band structure, such that the resulting 𝑀−1 contains
zeros outside of the band structure.

Another important issue is the use of special Green’s function [16] which satisfies:

∂𝐺(𝑝, 𝑞)

∂n
= 0 on Γ1 and Γ2. (40)
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The use of such Green’s function results into necessity to integrate over the contact regions as
in (31) and not over the whole boundary. This means that the substrate modeling is performed in
semi-infinite domain as shown in Figure 11.

In the next section we consider extraction of a 3D homogeneous substrate and we will show how
the above techniques influence on a solution obtained by BEM in comparison with to a solution
obtained by FEM.

6. MODELING OF 3D SUBSTRATE BY BEM AND FEM

In this section we will compare the BEM and FEM methods for the simulation of a 3D homogeneous
substrate. We discuss features of modeling the substrate by existing tools based on BEM and FEM
and investigate the convergence of both methods.

We consider a uniformly doped (10 S/m) substrate 1000× 1000× 380 𝜇𝑚 which is presented in
Figure 12. On the top layer it has two contacts of dimension 5× 1.5 𝜇𝑚, and the distance between
these contact is 60 𝜇𝑚. To extract the equivalent resistance between two contacts, we will use the
following modeling tools:

∙ SPACE [10] - layout-to-circuit extractor with implementation of BEM,
∙ Comsol [4] - FEM-based multiphysics modeling tool.

The technology data for BEM method can be described in SPACE through a high-level description
language as described in [5]. Comsol is used through its graphical user interface.

6.1. Comparison between the methods

There are a few main differences between BEM and FEM. Substrate modeling by BEM
implemented in SPACE requires discretization of only contact areas, while FEM discretizes the
whole domain into tetrahedral elements. BEM assumes domain to be a semi-infinite half-space,
while FEM requires finite domain. Therefore FEM can approximate BEM by defining the FEM
domain as large as possible [14].

As for 2D case, extraction of the 3D substrate with two contacts by BEM leads to a resistance
network with 3 nodes: two nodes correspond to the contacts (C1 and C2) and one node corresponds
to a reference node SUB. After elimination of the reference node, the network can be compared to
the one obtained by FEM which does not contain the reference node.

In Comsol we have chosen mesh with as much adaptive refinement as possible, given the available
amount of memory in the machine on which Comsol runs. For SPACE we have used nominal
extraction settings.

Table I demonstrates that the computed path resistances by BEM and FEM networks are close.
The remaining differences between BEM and FEM results are caused by the fact that path resistance
by FEM has not been yet converged to the final path resistance, while path resistance by BEM
converges. This fact will be clarified in the next two sections. One can think that for a considered
3D substrate BEM does not approximate FEM well. This is not the case because the size of the
contacts are small compared to the size of the substrate.

6.2. Convergence of FEM

This section presents practical study of the convergence of FEM by varying maximum mesh size at
the contacts and total number of mesh elements.

We note that fine discretization of the contact areas is required to compute accurately extracted
resistance. Indeed, the path resistance value, R, between the contacts depends on the value of current
flux 𝐼 through the first contact and applied voltage 𝑉 at the second contact as

𝑅 =
𝑉

𝐼
,
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Figure 12. Example of the substrate with two contacts. Image taken from the Comsol user interface.

Table I. Resistance values in 𝑘Ω extracted from the 3D substrate with two contacts. The bottom row indicates
resistance between the contacts C1 and C2 after elimination of the reference node SUB

BEM FEM

R(C1,C2) 854.54 33.81
R(C1,SUB) 15.12 -
R(C1,SUB) 15.12 -

29.22 33.81

Table II. Statistics about solutions by FEM with adaptive mesh refinement

# meshes at C1 112 136 358
# meshes (total) 28066 94753 178190
path resistance (𝑘Ω) 38.74 36.09 33.81
time (s) 6 73.6 218.4

The current flux requires computing the integral over the boundary of the contact area: 𝐼 =
∮
Γ
𝐽𝑛𝑑𝑙,

therefore discretization plays an important role. The finer discretization, the more accurate resistance
value can be obtained.

Table II shows that adaptive mesh refinement makes the resistance value decreased. However
comparing the last value of path resistance (33.81 𝑘Ω) with the previous one (36.09 𝑘Ω) shows
that the convergence has not been achieved yet. Further refinement was not possible due to the lack
of memory. From this we conclude that extraction of the substrate by FEM requires either smaller
substrate’s domain or more computer memory to perform further refinements.

6.3. Convergence of BEM

In this section we study convergence of BEM through the parameters available in the layout-to-
circuit extractor SPACE. For this we choose nominal settings, and vary only individual parameters,
while keeping other parameters at their nominal settings. The nominal settings are

∙ number of BEM meshes per contact = 68,
∙ size of BEM window = ∞, i.e., all entries of 𝑀−1 in (39) are taken into account.
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Table III. Extraction statistics and resistance values for increasing refinement in the BEM mesh

#BEM elements time (s) mem
(Mb)

𝑅 (𝑘Ω)

4 2 0.12 30.77
8 2 0.13 30.76
16 2 0.18 30.45
68 2.1 1.05 29.22
296 4.3 16.6 29.01
332 5 20.85 29.00

Table IV. Extraction statistics and resistance values for increasing size of the BEM window

BEM window size (𝜇𝑚) time (s) mem (Mb) 𝑅 (𝑘Ω)
1 2.1 0.188 25.58
5 2.1 0.370 29.73
30 2.3 0.408 29.73
50 2.3 1.057 29.22
∞ 2.3 1.057 29.22

6.3.1. BEM mesh The initial BEM mesh consists of 68 BEM elements per contact. Table III
demonstrates that refinement has very little influence on resistance value between the contacts while
it is relatively costly with respect to extraction time and memory usage.

6.3.2. Size of BEM window SPACE allows sparsification through the windowing technique
[14][16] which can make the method more efficient at the cost of some accuracy. Table IV shows
that windows’s size has little influence on the resistance value, while memory usage increases if
window’s size increases. Changes in time are less noticeable due to the relatively small amount of
contacts and meshes at each contact.

7. CONCLUDING REMARKS

In this report we have considered the problem of homogeneous substrate modeling by the boundary
element method (BEM) and the finite element method (FEM). Depending on the characteristics
of the particular task, BEM and FEM techniques have advantages and disadvantages. BEM finds
the solution on the boundary, and to know the solution at some internal points, BEM requires
postprocessing. On the other hand, FEM finds solution at each discretization point of the domain.
Therefore, if one is interested in behaviour of the whole domain FEM is more suitable for this task.
For other problem BEM proves to be a much better alternative.

For instance, for extraction of a resistance network which describes the behaviour of a
homogeneous substrate, one requires to know the solution only at the contact areas. From this
perspective, BEM is more attractive, since solutions at the inner nodes are not required and,
therefore, we spare time and do not capture details which are not necessary. In this sense BEM
is a model order reduction technique on the operator level. Furthermore, there is another aspect to
consider. Solving a 3D problem by FEM may be time and memory-consuming due to necessity of
fine discretization, while BEM is out of this problem.
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As we saw, BEM relies on the Green’s function and requires discretization of the whole boundary.
We have explored the usage of BEM for modeling of 2D and 3D substrates. A special choice of
Green’s function leads that only contact areas have to be discretized and not the whole boundary.
In this case BEM considers substrate as a semi-infinite half space. As a result, FEM solution at the
contacts can approximate BEM solution by making FEM domain as large as possible.

BEM leads to dense matrices, which have the size of the number of elements at the boundary.
Therefore, we also addressed the problem of BEM delivering dense matrices. One of the alternative
we studied was the use of windowing technique which sparsifies the matrix by taking into account
only influences between boundary elements that are relatively close to each other. We have observed
that sparsification has little influence on the quality of extraction.

We note that the class of problems in which BEM can be applied is limited. For example,
modeling of substrates involving layout-dependent doping patterns is more challenging than
modeling of homogeneous substrates [15][14]. In this case, finding analytical Green’s function
becomes extremely difficult, which restricts the kind of problems in which BEM can be applied
efficiently. To overcome this problem, FEM or combined BEM/FEM methods can be considered.
Nonetheless, BEM performs better than FEM when applied to homogeneous substrate extraction.
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