1,151 research outputs found

    Combinatorial Seifert fibred spaces with transitive cyclic automorphism group

    Full text link
    In combinatorial topology we aim to triangulate manifolds such that their topological properties are reflected in the combinatorial structure of their description. Here, we give a combinatorial criterion on when exactly triangulations of 3-manifolds with transitive cyclic symmetry can be generalised to an infinite family of such triangulations with similarly strong combinatorial properties. In particular, we construct triangulations of Seifert fibred spaces with transitive cyclic symmetry where the symmetry preserves the fibres and acts non-trivially on the homology of the spaces. The triangulations include the Brieskorn homology spheres Σ(p,q,r)\Sigma (p,q,r), the lens spaces L(q,1)\operatorname{L} (q,1) and, as a limit case, (S2×S1)#(p1)(q1)(\mathbf{S}^2 \times \mathbf{S}^1)^{\# (p-1)(q-1)}.Comment: 28 pages, 9 figures. Minor update. To appear in Israel Journal of Mathematic

    Combinatorial triangulations of homology spheres

    Get PDF
    Let Mu be an n-vertex combinatorial triangulation of a Ζ2-homology d-sphere. In this paper we prove that if n ≤ d+8 then Mu must be a combinatorial sphere. Further, if n=d+9 and M is not a combinatorial sphere then Mu cannot admit any proper bistellar move. Existence of a 12-vertex triangulation of the lens space L(3,1) shows that the first result is sharp in dimension three. In the course of the proof we also show that anyΖ2-acyclic simplicial complex on ≤7 vertices is necessarily collapsible. This result is best possible since there exist 8-vertex triangulations of the Dunce Hat which are not collapsible

    Stacked polytopes and tight triangulations of manifolds

    Get PDF
    Tightness of a triangulated manifold is a topological condition, roughly meaning that any simplexwise linear embedding of the triangulation into euclidean space is "as convex as possible". It can thus be understood as a generalization of the concept of convexity. In even dimensions, super-neighborliness is known to be a purely combinatorial condition which implies the tightness of a triangulation. Here we present other sufficient and purely combinatorial conditions which can be applied to the odd-dimensional case as well. One of the conditions is that all vertex links are stacked spheres, which implies that the triangulation is in Walkup's class K(d)\mathcal{K}(d). We show that in any dimension d4d\geq 4 \emph{tight-neighborly} triangulations as defined by Lutz, Sulanke and Swartz are tight. Furthermore, triangulations with kk-stacked vertex links and the centrally symmetric case are discussed.Comment: 28 pages, 2 figure

    Minimal Triangulations of Manifolds

    Full text link
    In this survey article, we are interested on minimal triangulations of closed pl manifolds. We present a brief survey on the works done in last 25 years on the following: (i) Finding the minimal number of vertices required to triangulate a given pl manifold. (ii) Given positive integers nn and dd, construction of nn-vertex triangulations of different dd-dimensional pl manifolds. (iii) Classifications of all the triangulations of a given pl manifold with same number of vertices. In Section 1, we have given all the definitions which are required for the remaining part of this article. In Section 2, we have presented a very brief history of triangulations of manifolds. In Section 3, we have presented examples of several vertex-minimal triangulations. In Section 4, we have presented some interesting results on triangulations of manifolds. In particular, we have stated the Lower Bound Theorem and the Upper Bound Theorem. In Section 5, we have stated several results on minimal triangulations without proofs. Proofs are available in the references mentioned there.Comment: Survey article, 29 page

    On stacked triangulated manifolds

    Full text link
    We prove two results on stacked triangulated manifolds in this paper: (a) every stacked triangulation of a connected manifold with or without boundary is obtained from a simplex or the boundary of a simplex by certain combinatorial operations; (b) in dimension d4d \geq 4, if Δ\Delta is a tight connected closed homology dd-manifold whose iith homology vanishes for 1<i<d11 < i < d-1, then Δ\Delta is a stacked triangulation of a manifold.These results give affirmative answers to questions posed by Novik and Swartz and by Effenberger.Comment: 11 pages, minor changes in the organization of the paper, add information about recent result
    corecore