13,931 research outputs found

    Entanglement and quantum combinatorial designs

    Full text link
    We introduce several classes of quantum combinatorial designs, namely quantum Latin squares, cubes, hypercubes and a notion of orthogonality between them. A further introduced notion, quantum orthogonal arrays, generalizes all previous classes of designs. We show that mutually orthogonal quantum Latin arrangements can be entangled in the same way than quantum states are entangled. Furthermore, we show that such designs naturally define a remarkable class of genuinely multipartite highly entangled states called kk-uniform, i.e. multipartite pure states such that every reduction to kk parties is maximally mixed. We derive infinitely many classes of mutually orthogonal quantum Latin arrangements and quantum orthogonal arrays having an arbitrary large number of columns. The corresponding multipartite kk-uniform states exhibit a high persistency of entanglement, which makes them ideal candidates to develop multipartite quantum information protocols.Comment: 14 pages, 3 figures. Comments are very welcome

    Non-adaptive probabilistic group testing with noisy measurements: Near-optimal bounds with efficient algorithms

    Full text link
    We consider the problem of detecting a small subset of defective items from a large set via non-adaptive "random pooling" group tests. We consider both the case when the measurements are noiseless, and the case when the measurements are noisy (the outcome of each group test may be independently faulty with probability q). Order-optimal results for these scenarios are known in the literature. We give information-theoretic lower bounds on the query complexity of these problems, and provide corresponding computationally efficient algorithms that match the lower bounds up to a constant factor. To the best of our knowledge this work is the first to explicitly estimate such a constant that characterizes the gap between the upper and lower bounds for these problems

    The Capacity of Adaptive Group Testing

    Full text link
    We define capacity for group testing problems and deduce bounds for the capacity of a variety of noisy models, based on the capacity of equivalent noisy communication channels. For noiseless adaptive group testing we prove an information-theoretic lower bound which tightens a bound of Chan et al. This can be combined with a performance analysis of a version of Hwang's adaptive group testing algorithm, in order to deduce the capacity of noiseless and erasure group testing models.Comment: 5 page

    The capacity of non-identical adaptive group testing

    Full text link
    We consider the group testing problem, in the case where the items are defective independently but with non-constant probability. We introduce and analyse an algorithm to solve this problem by grouping items together appropriately. We give conditions under which the algorithm performs essentially optimally in the sense of information-theoretic capacity. We use concentration of measure results to bound the probability that this algorithm requires many more tests than the expected number. This has applications to the allocation of spectrum to cognitive radios, in the case where a database gives prior information that a particular band will be occupied.Comment: To be presented at Allerton 201

    Summary Based Structures with Improved Sublinear Recovery for Compressed Sensing

    Get PDF
    We introduce a new class of measurement matrices for compressed sensing, using low order summaries over binary sequences of a given length. We prove recovery guarantees for three reconstruction algorithms using the proposed measurements, including 1\ell_1 minimization and two combinatorial methods. In particular, one of the algorithms recovers kk-sparse vectors of length NN in sublinear time poly(klogN)\text{poly}(k\log{N}), and requires at most Ω(klogNloglogN)\Omega(k\log{N}\log\log{N}) measurements. The empirical oversampling constant of the algorithm is significantly better than existing sublinear recovery algorithms such as Chaining Pursuit and Sudocodes. In particular, for 103N10810^3\leq N\leq 10^8 and k=100k=100, the oversampling factor is between 3 to 8. We provide preliminary insight into how the proposed constructions, and the fast recovery scheme can be used in a number of practical applications such as market basket analysis, and real time compressed sensing implementation

    A single-photon sampling architecture for solid-state imaging

    Full text link
    Advances in solid-state technology have enabled the development of silicon photomultiplier sensor arrays capable of sensing individual photons. Combined with high-frequency time-to-digital converters (TDCs), this technology opens up the prospect of sensors capable of recording with high accuracy both the time and location of each detected photon. Such a capability could lead to significant improvements in imaging accuracy, especially for applications operating with low photon fluxes such as LiDAR and positron emission tomography. The demands placed on on-chip readout circuitry imposes stringent trade-offs between fill factor and spatio-temporal resolution, causing many contemporary designs to severely underutilize the technology's full potential. Concentrating on the low photon flux setting, this paper leverages results from group testing and proposes an architecture for a highly efficient readout of pixels using only a small number of TDCs, thereby also reducing both cost and power consumption. The design relies on a multiplexing technique based on binary interconnection matrices. We provide optimized instances of these matrices for various sensor parameters and give explicit upper and lower bounds on the number of TDCs required to uniquely decode a given maximum number of simultaneous photon arrivals. To illustrate the strength of the proposed architecture, we note a typical digitization result of a 120x120 photodiode sensor on a 30um x 30um pitch with a 40ps time resolution and an estimated fill factor of approximately 70%, using only 161 TDCs. The design guarantees registration and unique recovery of up to 4 simultaneous photon arrivals using a fast decoding algorithm. In a series of realistic simulations of scintillation events in clinical positron emission tomography the design was able to recover the spatio-temporal location of 98.6% of all photons that caused pixel firings.Comment: 24 pages, 3 figures, 5 table
    corecore