13,581 research outputs found

    Entanglement and quantum combinatorial designs

    Full text link
    We introduce several classes of quantum combinatorial designs, namely quantum Latin squares, cubes, hypercubes and a notion of orthogonality between them. A further introduced notion, quantum orthogonal arrays, generalizes all previous classes of designs. We show that mutually orthogonal quantum Latin arrangements can be entangled in the same way than quantum states are entangled. Furthermore, we show that such designs naturally define a remarkable class of genuinely multipartite highly entangled states called kk-uniform, i.e. multipartite pure states such that every reduction to kk parties is maximally mixed. We derive infinitely many classes of mutually orthogonal quantum Latin arrangements and quantum orthogonal arrays having an arbitrary large number of columns. The corresponding multipartite kk-uniform states exhibit a high persistency of entanglement, which makes them ideal candidates to develop multipartite quantum information protocols.Comment: 14 pages, 3 figures. Comments are very welcome

    Non-adaptive probabilistic group testing with noisy measurements: Near-optimal bounds with efficient algorithms

    Full text link
    We consider the problem of detecting a small subset of defective items from a large set via non-adaptive "random pooling" group tests. We consider both the case when the measurements are noiseless, and the case when the measurements are noisy (the outcome of each group test may be independently faulty with probability q). Order-optimal results for these scenarios are known in the literature. We give information-theoretic lower bounds on the query complexity of these problems, and provide corresponding computationally efficient algorithms that match the lower bounds up to a constant factor. To the best of our knowledge this work is the first to explicitly estimate such a constant that characterizes the gap between the upper and lower bounds for these problems

    The capacity of non-identical adaptive group testing

    Full text link
    We consider the group testing problem, in the case where the items are defective independently but with non-constant probability. We introduce and analyse an algorithm to solve this problem by grouping items together appropriately. We give conditions under which the algorithm performs essentially optimally in the sense of information-theoretic capacity. We use concentration of measure results to bound the probability that this algorithm requires many more tests than the expected number. This has applications to the allocation of spectrum to cognitive radios, in the case where a database gives prior information that a particular band will be occupied.Comment: To be presented at Allerton 201

    The Capacity of Adaptive Group Testing

    Full text link
    We define capacity for group testing problems and deduce bounds for the capacity of a variety of noisy models, based on the capacity of equivalent noisy communication channels. For noiseless adaptive group testing we prove an information-theoretic lower bound which tightens a bound of Chan et al. This can be combined with a performance analysis of a version of Hwang's adaptive group testing algorithm, in order to deduce the capacity of noiseless and erasure group testing models.Comment: 5 page

    Summary Based Structures with Improved Sublinear Recovery for Compressed Sensing

    Get PDF
    We introduce a new class of measurement matrices for compressed sensing, using low order summaries over binary sequences of a given length. We prove recovery guarantees for three reconstruction algorithms using the proposed measurements, including 1\ell_1 minimization and two combinatorial methods. In particular, one of the algorithms recovers kk-sparse vectors of length NN in sublinear time poly(klogN)\text{poly}(k\log{N}), and requires at most Ω(klogNloglogN)\Omega(k\log{N}\log\log{N}) measurements. The empirical oversampling constant of the algorithm is significantly better than existing sublinear recovery algorithms such as Chaining Pursuit and Sudocodes. In particular, for 103N10810^3\leq N\leq 10^8 and k=100k=100, the oversampling factor is between 3 to 8. We provide preliminary insight into how the proposed constructions, and the fast recovery scheme can be used in a number of practical applications such as market basket analysis, and real time compressed sensing implementation

    Solution to the Mean King's problem with mutually unbiased bases for arbitrary levels

    Get PDF
    The Mean King's problem with mutually unbiased bases is reconsidered for arbitrary d-level systems. Hayashi, Horibe and Hashimoto [Phys. Rev. A 71, 052331 (2005)] related the problem to the existence of a maximal set of d-1 mutually orthogonal Latin squares, in their restricted setting that allows only measurements of projection-valued measures. However, we then cannot find a solution to the problem when e.g., d=6 or d=10. In contrast to their result, we show that the King's problem always has a solution for arbitrary levels if we also allow positive operator-valued measures. In constructing the solution, we use orthogonal arrays in combinatorial design theory.Comment: REVTeX4, 4 page
    corecore