3 research outputs found

    A Hybrid Water Flow-Like Algorithm and Variable Neighbourhood Search for Traveling Salesman Problem

    Get PDF
    Various metaheuristic methods have been proposed earlier and applied for solving the Travelling Salesman Problem (TSP). Water Flow Algorithm (WFA) is one of the recent population-based metaheuristic optimization techniques used for solving this problem. Past research has shown that improving WFA local search strategy has a significant impact on the algorithm performance. Therefore, this paper aims to solve TSP by enhancing WFA searching strategy based on a Variable Neighbourhood Search (VNS) known as hybrid WFA-VNS. It is a mixture of the exploration of WFA and the exploitation capability of VNS. This study is conducted in two stages: Pre-experiment and initial experiment. The objective of doing pre-experiment is to select four neighborhood structures to be used for the initial experiment. At the first stage, three instances are used, and there are five neighborhood structures involved. Those neighborhood structures are two opt, three opt, four opt, swapping, and insertion move. Because of pre-experiment, it discovers four best neighborhood structures, which are two opt, three opt, exchanging and insertion move. These neighborhood structures will be used in the initial experiment, which an improvement approach is employed. In an initial experiment, the performance of the proposed hybrid WFA-VNS is further studied and tested on 26 established benchmarked symmetric TSP datasets using four neighborhood structures selected in pre-experiment earlier. The TSP datasets involved are categorized into three types: small datasets, medium datasets, and large datasets. Selected neighborhood structures obtained in pre-experiment are applied and generated randomly to intensify the initial solution achieved at an earlier stage of hybrid WFA-VNS. The results of the comparison show that this hybrid approach represents an improvement and able to produce competitive results

    Combinatorial GVNS (General Variable Neighborhood Search) Optimization for Dynamic Garbage Collection

    No full text
    General variable neighborhood search (GVNS) is a well known and widely used metaheuristic for efficiently solving many NP-hard combinatorial optimization problems. We propose a novel extension of the conventional GVNS. Our approach incorporates ideas and techniques from the field of quantum computation during the shaking phase. The travelling salesman problem (TSP) is a well known NP-hard problem which has broadly been used for modelling many real life routing cases. As a consequence, TSP can be used as a basis for modelling and finding routes via the Global Positioning System (GPS). In this paper, we examine the potential use of this method for the GPS system of garbage trucks. Specifically, we provide a thorough presentation of our method accompanied with extensive computational results. The experimental data accumulated on a plethora of TSP instances, which are shown in a series of figures and tables, allow us to conclude that the novel GVNS algorithm can provide an efficient solution for this type of geographical problem

    Fuzzy Decision Making and Soft Computing Applications

    Get PDF
    This Special Issue collects original research articles discussing cutting-edge work as well as perspectives on future directions in the whole range of theoretical and practical aspects in these research areas: i) Theory of fuzzy systems and soft computing; ii) Learning procedures; iii) Decision-making applications employing fuzzy logic and soft computing
    corecore