15,171 research outputs found

    Geometry of graph varieties

    Get PDF
    A picture P of a graph G = (V,E) consists of a point P(v) for each vertex v in V and a line P(e) for each edge e in E, all lying in the projective plane over a field k and subject to containment conditions corresponding to incidence in G. A graph variety is an algebraic set whose points parametrize pictures of G. We consider three kinds of graph varieties: the picture space X(G) of all pictures, the picture variety V(G), an irreducible component of X(G) of dimension 2|V|, defined as the closure of the set of pictures on which all the P(v) are distinct, and the slope variety S(G), obtained by forgetting all data except the slopes of the lines P(e). We use combinatorial techniques (in particular, the theory of combinatorial rigidity) to obtain the following geometric and algebraic information on these varieties: (1) a description and combinatorial interpretation of equations defining each variety set-theoretically; (2) a description of the irreducible components of X(G); and (3) a proof that V(G) and S(G) are Cohen-Macaulay when G satisfies a sparsity condition, rigidity independence. In addition, our techniques yield a new proof of the equality of two matroids studied in rigidity theory.Comment: 19 pages. To be published in Transactions of the AM

    Linear Toric Fibrations

    Full text link
    These notes are based on three lectures given at the 2013 CIME/CIRM summer school. The purpose of this series of lectures is to introduce the notion of a toric fibration and to give its geometrical and combinatorial characterizations. Polarized toric varieties which are birationally equivalent to projective toric bundles are associated to a class of polytopes called Cayley polytopes. Their geometry and combinatorics have a fruitful interplay leading to fundamental insight in both directions. These notes will illustrate geometrical phenomena, in algebraic geometry and neighboring fields, which are characterized by a Cayley structure. Examples are projective duality of toric varieties and polyhedral adjunction theory

    Algebraic Topology of Calabi-Yau Threefolds in Toric Varieties

    Full text link
    We compute the integral homology (including torsion), the topological K-theory, and the Hodge structure on cohomology of Calabi-Yau threefold hypersurfaces and complete intersections in Gorenstein toric Fano varieties. The methods are purely topological

    Random Sampling in Computational Algebra: Helly Numbers and Violator Spaces

    Get PDF
    This paper transfers a randomized algorithm, originally used in geometric optimization, to computational problems in commutative algebra. We show that Clarkson's sampling algorithm can be applied to two problems in computational algebra: solving large-scale polynomial systems and finding small generating sets of graded ideals. The cornerstone of our work is showing that the theory of violator spaces of G\"artner et al.\ applies to polynomial ideal problems. To show this, one utilizes a Helly-type result for algebraic varieties. The resulting algorithms have expected runtime linear in the number of input polynomials, making the ideas interesting for handling systems with very large numbers of polynomials, but whose rank in the vector space of polynomials is small (e.g., when the number of variables and degree is constant).Comment: Minor edits, added two references; results unchange
    • …
    corecore