1,516 research outputs found

    Semi-supervised Deep Generative Modelling of Incomplete Multi-Modality Emotional Data

    Full text link
    There are threefold challenges in emotion recognition. First, it is difficult to recognize human's emotional states only considering a single modality. Second, it is expensive to manually annotate the emotional data. Third, emotional data often suffers from missing modalities due to unforeseeable sensor malfunction or configuration issues. In this paper, we address all these problems under a novel multi-view deep generative framework. Specifically, we propose to model the statistical relationships of multi-modality emotional data using multiple modality-specific generative networks with a shared latent space. By imposing a Gaussian mixture assumption on the posterior approximation of the shared latent variables, our framework can learn the joint deep representation from multiple modalities and evaluate the importance of each modality simultaneously. To solve the labeled-data-scarcity problem, we extend our multi-view model to semi-supervised learning scenario by casting the semi-supervised classification problem as a specialized missing data imputation task. To address the missing-modality problem, we further extend our semi-supervised multi-view model to deal with incomplete data, where a missing view is treated as a latent variable and integrated out during inference. This way, the proposed overall framework can utilize all available (both labeled and unlabeled, as well as both complete and incomplete) data to improve its generalization ability. The experiments conducted on two real multi-modal emotion datasets demonstrated the superiority of our framework.Comment: arXiv admin note: text overlap with arXiv:1704.07548, 2018 ACM Multimedia Conference (MM'18

    Developing an Affect-Aware Rear-Projected Robotic Agent

    Get PDF
    Social (or Sociable) robots are designed to interact with people in a natural and interpersonal manner. They are becoming an integrated part of our daily lives and have achieved positive outcomes in several applications such as education, health care, quality of life, entertainment, etc. Despite significant progress towards the development of realistic social robotic agents, a number of problems remain to be solved. First, current social robots either lack enough ability to have deep social interaction with human, or they are very expensive to build and maintain. Second, current social robots have yet to reach the full emotional and social capabilities necessary for rich and robust interaction with human beings. To address these problems, this dissertation presents the development of a low-cost, flexible, affect-aware rear-projected robotic agent (called ExpressionBot), that is designed to support verbal and non-verbal communication between the robot and humans, with the goal of closely modeling the dynamics of natural face-to-face communication. The developed robotic platform uses state-of-the-art character animation technologies to create an animated human face (aka avatar) that is capable of showing facial expressions, realistic eye movement, and accurate visual speech, and then project this avatar onto a face-shaped translucent mask. The mask and the projector are then rigged onto a neck mechanism that can move like a human head. Since an animation is projected onto a mask, the robotic face is highly flexible research tool, mechanically simple, and low-cost to design, build and maintain compared with mechatronic and android faces. The results of our comprehensive Human-Robot Interaction (HRI) studies illustrate the benefits and values of the proposed rear-projected robotic platform over a virtual-agent with the same animation displayed on a 2D computer screen. The results indicate that ExpressionBot is well accepted by users, with some advantages in expressing facial expressions more accurately and perceiving mutual eye gaze contact. To improve social capabilities of the robot and create an expressive and empathic social agent (affect-aware) which is capable of interpreting users\u27 emotional facial expressions, we developed a new Deep Neural Networks (DNN) architecture for Facial Expression Recognition (FER). The proposed DNN was initially trained on seven well-known publicly available databases, and obtained significantly better than, or comparable to, traditional convolutional neural networks or other state-of-the-art methods in both accuracy and learning time. Since the performance of the automated FER system highly depends on its training data, and the eventual goal of the proposed robotic platform is to interact with users in an uncontrolled environment, a database of facial expressions in the wild (called AffectNet) was created by querying emotion-related keywords from different search engines. AffectNet contains more than 1M images with faces and 440,000 manually annotated images with facial expressions, valence, and arousal. Two DNNs were trained on AffectNet to classify the facial expression images and predict the value of valence and arousal. Various evaluation metrics show that our deep neural network approaches trained on AffectNet can perform better than conventional machine learning methods and available off-the-shelf FER systems. We then integrated this automated FER system into spoken dialog of our robotic platform to extend and enrich the capabilities of ExpressionBot beyond spoken dialog and create an affect-aware robotic agent that can measure and infer users\u27 affect and cognition. Three social/interaction aspects (task engagement, being empathic, and likability of the robot) are measured in an experiment with the affect-aware robotic agent. The results indicate that users rated our affect-aware agent as empathic and likable as a robot in which user\u27s affect is recognized by a human (WoZ). In summary, this dissertation presents the development and HRI studies of a perceptive, and expressive, conversational, rear-projected, life-like robotic agent (aka ExpressionBot or Ryan) that models natural face-to-face communication between human and emapthic agent. The results of our in-depth human-robot-interaction studies show that this robotic agent can serve as a model for creating the next generation of empathic social robots

    Human-controllable and structured deep generative models

    Get PDF
    Deep generative models are a class of probabilistic models that attempts to learn the underlying data distribution. These models are usually trained in an unsupervised way and thus, do not require any labels. Generative models such as Variational Autoencoders and Generative Adversarial Networks have made astounding progress over the last years. These models have several benefits: eased sampling and evaluation, efficient learning of low-dimensional representations for downstream tasks, and better understanding through interpretable representations. However, even though the quality of these models has improved immensely, the ability to control their style and structure is limited. Structured and human-controllable representations of generative models are essential for human-machine interaction and other applications, including fairness, creativity, and entertainment. This thesis investigates learning human-controllable and structured representations with deep generative models. In particular, we focus on generative modelling of 2D images. For the first part, we focus on learning clustered representations. We propose semi-parametric hierarchical variational autoencoders to estimate the intensity of facial action units. The semi-parametric model forms a hybrid generative-discriminative model and leverages both parametric Variational Autoencoder and non-parametric Gaussian Process autoencoder. We show superior performance in comparison with existing facial action unit estimation approaches. Based on the results and analysis of the learned representation, we focus on learning Mixture-of-Gaussians representations in an autoencoding framework. We deviate from the conventional autoencoding framework and consider a regularized objective with the Cauchy-Schwarz divergence. The Cauchy-Schwarz divergence allows a closed-form solution for Mixture-of-Gaussian distributions and, thus, efficiently optimizing the autoencoding objective. We show that our model outperforms existing Variational Autoencoders in density estimation, clustering, and semi-supervised facial action detection. We focus on learning disentangled representations for conditional generation and fair facial attribute classification for the second part. Conditional image generation relies on the accessibility to large-scale annotated datasets. Nevertheless, the geometry of visual objects, such as in faces, cannot be learned implicitly and deteriorate image fidelity. We propose incorporating facial landmarks with a statistical shape model and a differentiable piecewise affine transformation to separate the representation for appearance and shape. The goal of incorporating facial landmarks is that generation is controlled and can separate different appearances and geometries. In our last work, we use weak supervision for disentangling groups of variations. Works on learning disentangled representation have been done in an unsupervised fashion. However, recent works have shown that learning disentangled representations is not identifiable without any inductive biases. Since then, there has been a shift towards weakly-supervised disentanglement learning. We investigate using regularization based on the Kullback-Leiber divergence to disentangle groups of variations. The goal is to have consistent and separated subspaces for different groups, e.g., for content-style learning. Our evaluation shows increased disentanglement abilities and competitive performance for image clustering and fair facial attribute classification with weak supervision compared to supervised and semi-supervised approaches.Open Acces

    Methods to assess food-evoked emotion across cultures

    Get PDF

    Neurological and Mental Disorders

    Get PDF
    Mental disorders can result from disruption of neuronal circuitry, damage to the neuronal and non-neuronal cells, altered circuitry in the different regions of the brain and any changes in the permeability of the blood brain barrier. Early identification of these impairments through investigative means could help to improve the outcome for many brain and behaviour disease states.The chapters in this book describe how these abnormalities can lead to neurological and mental diseases such as ADHD (Attention Deficit Hyperactivity Disorder), anxiety disorders, Alzheimer’s disease and personality and eating disorders. Psycho-social traumas, especially during childhood, increase the incidence of amnesia and transient global amnesia, leading to the temporary inability to create new memories.Early detection of these disorders could benefit many complex diseases such as schizophrenia and depression

    Affective Computing

    Get PDF
    This book provides an overview of state of the art research in Affective Computing. It presents new ideas, original results and practical experiences in this increasingly important research field. The book consists of 23 chapters categorized into four sections. Since one of the most important means of human communication is facial expression, the first section of this book (Chapters 1 to 7) presents a research on synthesis and recognition of facial expressions. Given that we not only use the face but also body movements to express ourselves, in the second section (Chapters 8 to 11) we present a research on perception and generation of emotional expressions by using full-body motions. The third section of the book (Chapters 12 to 16) presents computational models on emotion, as well as findings from neuroscience research. In the last section of the book (Chapters 17 to 22) we present applications related to affective computing

    Continuous Emotion Prediction from Speech: Modelling Ambiguity in Emotion

    Full text link
    There is growing interest in emotion research to model perceived emotion labelled as intensities along the affect dimensions such as arousal and valence. These labels are typically obtained from multiple annotators who would have their individualistic perceptions of emotional speech. Consequently, emotion prediction models that incorporate variation in individual perceptions as ambiguity in the emotional state would be more realistic. This thesis develops the modelling framework necessary to achieve continuous prediction of ambiguous emotional states from speech. Besides, emotion labels, feature space distribution and encoding are an integral part of the prediction system. The first part of this thesis examines the limitations of current low-level feature distributions and their minimalistic statistical descriptions. Specifically, front-end paralinguistic acoustic features are reflective of speech production mechanisms. However, discriminatively learnt features have frequently outperformed acoustic features in emotion prediction tasks, but provide no insights into the physical significance of these features. One of the contributions of this thesis is the development of a framework that can modify the acoustic feature representation based on emotion label information. Another investigation in this thesis indicates that emotion perception is language-dependent and in turn, helped develop a framework for cross-language emotion prediction. Furthermore, this investigation supported the hypothesis that emotion perception is highly individualistic and is better modelled as a distribution rather than a point estimate to encode information about the ambiguity in the perceived emotion. Following this observation, the thesis proposes measures to quantify the appropriateness of distribution types in modelling ambiguity in dimensional emotion labels which are then employed to compare well-known bounded parametric distributions. These analyses led to the conclusion that the beta distribution was the most appropriate parametric model of ambiguity in emotion labels. Finally, the thesis focuses on developing a deep learning framework for continuous emotion prediction as a temporal series of beta distributions, examining various parameterizations of the beta distributions as well as loss functions. Furthermore, distribution over the parameter spaces is examined and priors from kernel density estimation are employed to shape the posteriors over the parameter space which significantly improved valence ambiguity predictions. The proposed frameworks and methods have been extensively evaluated on multiple state of-the-art databases and the results demonstrate both the viability of predicting ambiguous emotion states and the validity of the proposed systems

    ACII 2009: Affective Computing and Intelligent Interaction. Proceedings of the Doctoral Consortium 2009

    Get PDF
    • …
    corecore