6,488 research outputs found

    Sub-word indexing and blind relevance feedback for English, Bengali, Hindi, and Marathi IR

    Get PDF
    The Forum for Information Retrieval Evaluation (FIRE) provides document collections, topics, and relevance assessments for information retrieval (IR) experiments on Indian languages. Several research questions are explored in this paper: 1. how to create create a simple, languageindependent corpus-based stemmer, 2. how to identify sub-words and which types of sub-words are suitable as indexing units, and 3. how to apply blind relevance feedback on sub-words and how feedback term selection is affected by the type of the indexing unit. More than 140 IR experiments are conducted using the BM25 retrieval model on the topic titles and descriptions (TD) for the FIRE 2008 English, Bengali, Hindi, and Marathi document collections. The major findings are: The corpus-based stemming approach is effective as a knowledge-light term conation step and useful in case of few language-specific resources. For English, the corpusbased stemmer performs nearly as well as the Porter stemmer and significantly better than the baseline of indexing words when combined with query expansion. In combination with blind relevance feedback, it also performs significantly better than the baseline for Bengali and Marathi IR. Sub-words such as consonant-vowel sequences and word prefixes can yield similar or better performance in comparison to word indexing. There is no best performing method for all languages. For English, indexing using the Porter stemmer performs best, for Bengali and Marathi, overlapping 3-grams obtain the best result, and for Hindi, 4-prefixes yield the highest MAP. However, in combination with blind relevance feedback using 10 documents and 20 terms, 6-prefixes for English and 4-prefixes for Bengali, Hindi, and Marathi IR yield the highest MAP. Sub-word identification is a general case of decompounding. It results in one or more index terms for a single word form and increases the number of index terms but decreases their average length. The corresponding retrieval experiments show that relevance feedback on sub-words benefits from selecting a larger number of index terms in comparison with retrieval on word forms. Similarly, selecting the number of relevance feedback terms depending on the ratio of word vocabulary size to sub-word vocabulary size almost always slightly increases information retrieval effectiveness compared to using a fixed number of terms for different languages

    Chinese Spoken Document Summarization Using Probabilistic Latent Topical Information

    Get PDF
    [[abstract]]The purpose of extractive summarization is to automatically select a number of indicative sentences, passages, or paragraphs from the original document according to a target summarization ratio and then sequence them to form a concise summary. In the paper, we proposed the use of probabilistic latent topical information for extractive summarization of spoken documents. Various kinds of modeling structures and learning approaches were extensively investigated. In addition, the summarization capabilities were verified by comparison with the conventional vector space model and latent semantic indexing model, as well as the HMM model. The experiments were performed on the Chinese broadcast news collected in Taiwan. Noticeable performance gains were obtained.

    Spoken content retrieval: A survey of techniques and technologies

    Get PDF
    Speech media, that is, digital audio and video containing spoken content, has blossomed in recent years. Large collections are accruing on the Internet as well as in private and enterprise settings. This growth has motivated extensive research on techniques and technologies that facilitate reliable indexing and retrieval. Spoken content retrieval (SCR) requires the combination of audio and speech processing technologies with methods from information retrieval (IR). SCR research initially investigated planned speech structured in document-like units, but has subsequently shifted focus to more informal spoken content produced spontaneously, outside of the studio and in conversational settings. This survey provides an overview of the field of SCR encompassing component technologies, the relationship of SCR to text IR and automatic speech recognition and user interaction issues. It is aimed at researchers with backgrounds in speech technology or IR who are seeking deeper insight on how these fields are integrated to support research and development, thus addressing the core challenges of SCR

    Neural Vector Spaces for Unsupervised Information Retrieval

    Get PDF
    We propose the Neural Vector Space Model (NVSM), a method that learns representations of documents in an unsupervised manner for news article retrieval. In the NVSM paradigm, we learn low-dimensional representations of words and documents from scratch using gradient descent and rank documents according to their similarity with query representations that are composed from word representations. We show that NVSM performs better at document ranking than existing latent semantic vector space methods. The addition of NVSM to a mixture of lexical language models and a state-of-the-art baseline vector space model yields a statistically significant increase in retrieval effectiveness. Consequently, NVSM adds a complementary relevance signal. Next to semantic matching, we find that NVSM performs well in cases where lexical matching is needed. NVSM learns a notion of term specificity directly from the document collection without feature engineering. We also show that NVSM learns regularities related to Luhn significance. Finally, we give advice on how to deploy NVSM in situations where model selection (e.g., cross-validation) is infeasible. We find that an unsupervised ensemble of multiple models trained with different hyperparameter values performs better than a single cross-validated model. Therefore, NVSM can safely be used for ranking documents without supervised relevance judgments.Comment: TOIS 201

    Character-Aware Neural Language Models

    Full text link
    We describe a simple neural language model that relies only on character-level inputs. Predictions are still made at the word-level. Our model employs a convolutional neural network (CNN) and a highway network over characters, whose output is given to a long short-term memory (LSTM) recurrent neural network language model (RNN-LM). On the English Penn Treebank the model is on par with the existing state-of-the-art despite having 60% fewer parameters. On languages with rich morphology (Arabic, Czech, French, German, Spanish, Russian), the model outperforms word-level/morpheme-level LSTM baselines, again with fewer parameters. The results suggest that on many languages, character inputs are sufficient for language modeling. Analysis of word representations obtained from the character composition part of the model reveals that the model is able to encode, from characters only, both semantic and orthographic information.Comment: AAAI 201
    corecore