3 research outputs found

    Minimization of passenger takeoff and landing risk in offshore helicopter transportation: models, approaches and analysis

    Get PDF
    Offshore petroleum industry uses helicopters to transport the employees to and from installations. Takeoff and landing represent a substantial part of the flight risks for passengers. In this paper, we propose and analyze approaches to create a safe flight schedule to perform pickup of employees by several independent flights. Two scenarios are considered. Under the non-split scenario, exactly one visit is allowed to each installation. Under the split scenario, the pickup demand of an installation can be split between several flights. Interesting links between our problem and other problems of combinatorial optimization, e.g., parallel machine scheduling and bin-packing are established. We provide worst-case analysis of the performance of some of our algorithms and report the results of computational experiments conducted on randomly generated instances based on the real sets of installations in the oil fields on the Norwegian continental shelf. This paper is the first attempt to handle takeoff and landing risk in a flight schedule that consists of several flights and lays ground for the study on more advanced and practically relevant models

    Estimating the efficacy of mass rescue operations in ocean areas with vehicle routing models and heuristics

    Get PDF
    Tese de doutoramento, Estatística e Investigação Operacional (Optimização), Universidade de Lisboa, Faculdade de Ciências, 2018Mass rescue operations (MRO) in maritime areas, particularly in ocean areas, are a major concern for the authorities responsible for conducting search and rescue (SAR) activities. A mass rescue operation can be defined as a search and rescue activity characterized by the need for immediate assistance to a large number of persons in distress, such that the capabilities normally available to search and rescue are inadequate. In this dissertation we deal with a mass rescue operation within ocean areas and we consider the problem of rescuing a set of survivors following a maritime incident (cruise ship, oil platform, ditched airplane) that are drifting in time. The recovery of survivors is performed by nearby ships and helicopters. We also consider the possibility of ships capable of refuelling helicopters while hovering which can extend the range to which survivors can be rescued. A linear binary integer formulation is presented along with an application that allows users to build instances of the problem. The formulation considers a discretization of time within a certain time step in order to assess the possibility of travelling along different locations. The problem considered in this work can be perceived as an extension of the generalized vehicle routing problem (GVRP) with a profit stance since we may not be able to recover all of the survivors. We also present a look ahead approach, based on the pilot method, to the problem along with some optimal results using state of the art Mixed-integer linear programming solvers. Finally, the efficacy of the solution from the GVRP is estimated for a set of scenarios that combine incident severity, location, traffic density for nearby ships and SAR assets availability and location. Using traffic density maps and the estimated MRO efficacy, one can produce a combined vulnerability map to ascertain the quality of response to each scenario.Marinha Portuguesa, Plano de Atividades de Formação Nacional (PAFN

    Column Generation Based Heuristic for a Helicopter Routing Problem

    No full text
    corecore