19 research outputs found

    Hedetniemi's conjecture for Kneser hypergraphs

    Full text link
    One of the most famous conjecture in graph theory is Hedetniemi's conjecture stating that the chromatic number of the categorical product of graphs is the minimum of their chromatic numbers. Using a suitable extension of the definition of the categorical product, Zhu proposed in 1992 a similar conjecture for hypergraphs. We prove that Zhu's conjecture is true for the usual Kneser hypergraphs of same rank. It provides to the best of our knowledge the first non-trivial and explicit family of hypergraphs with rank larger than two satisfying this conjecture (the rank two case being Hedetniemi's conjecture). We actually prove a more general result providing a lower bound on the chromatic number of the categorical product of any Kneser hypergraphs as soon as they all have same rank. We derive from it new families of graphs satisfying Hedetniemi's conjecture. The proof of the lower bound relies on the ZpZ_p-Tucker lemma

    Topological lower bounds for the chromatic number: A hierarchy

    Full text link
    This paper is a study of ``topological'' lower bounds for the chromatic number of a graph. Such a lower bound was first introduced by Lov\'asz in 1978, in his famous proof of the \emph{Kneser conjecture} via Algebraic Topology. This conjecture stated that the \emph{Kneser graph} \KG_{m,n}, the graph with all kk-element subsets of {1,2,...,n}\{1,2,...,n\} as vertices and all pairs of disjoint sets as edges, has chromatic number n−2k+2n-2k+2. Several other proofs have since been published (by B\'ar\'any, Schrijver, Dolnikov, Sarkaria, Kriz, Greene, and others), all of them based on some version of the Borsuk--Ulam theorem, but otherwise quite different. Each can be extended to yield some lower bound on the chromatic number of an arbitrary graph. (Indeed, we observe that \emph{every} finite graph may be represented as a generalized Kneser graph, to which the above bounds apply.) We show that these bounds are almost linearly ordered by strength, the strongest one being essentially Lov\'asz' original bound in terms of a neighborhood complex. We also present and compare various definitions of a \emph{box complex} of a graph (developing ideas of Alon, Frankl, and Lov\'asz and of \kriz). A suitable box complex is equivalent to Lov\'asz' complex, but the construction is simpler and functorial, mapping graphs with homomorphisms to Z2\Z_2-spaces with Z2\Z_2-maps.Comment: 16 pages, 1 figure. Jahresbericht der DMV, to appea

    Improved hardness for H-colourings of G-colourable graphs

    Full text link
    We present new results on approximate colourings of graphs and, more generally, approximate H-colourings and promise constraint satisfaction problems. First, we show NP-hardness of colouring kk-colourable graphs with (k⌊k/2⌋)−1\binom{k}{\lfloor k/2\rfloor}-1 colours for every k≥4k\geq 4. This improves the result of Bul\'in, Krokhin, and Opr\v{s}al [STOC'19], who gave NP-hardness of colouring kk-colourable graphs with 2k−12k-1 colours for k≥3k\geq 3, and the result of Huang [APPROX-RANDOM'13], who gave NP-hardness of colouring kk-colourable graphs with 2k1/32^{k^{1/3}} colours for sufficiently large kk. Thus, for k≥4k\geq 4, we improve from known linear/sub-exponential gaps to exponential gaps. Second, we show that the topology of the box complex of H alone determines whether H-colouring of G-colourable graphs is NP-hard for all (non-bipartite, H-colourable) G. This formalises the topological intuition behind the result of Krokhin and Opr\v{s}al [FOCS'19] that 3-colouring of G-colourable graphs is NP-hard for all (3-colourable, non-bipartite) G. We use this technique to establish NP-hardness of H-colouring of G-colourable graphs for H that include but go beyond K3K_3, including square-free graphs and circular cliques (leaving K4K_4 and larger cliques open). Underlying all of our proofs is a very general observation that adjoint functors give reductions between promise constraint satisfaction problems.Comment: Mention improvement in Proposition 2.5. SODA 202

    Shannon capacity and the categorical product

    Get PDF
    corecore