5,009 research outputs found

    Coloring non-crossing strings

    Full text link
    For a family of geometric objects in the plane F={S1,,Sn}\mathcal{F}=\{S_1,\ldots,S_n\}, define χ(F)\chi(\mathcal{F}) as the least integer \ell such that the elements of F\mathcal{F} can be colored with \ell colors, in such a way that any two intersecting objects have distinct colors. When F\mathcal{F} is a set of pseudo-disks that may only intersect on their boundaries, and such that any point of the plane is contained in at most kk pseudo-disks, it can be proven that χ(F)3k/2+o(k)\chi(\mathcal{F})\le 3k/2 + o(k) since the problem is equivalent to cyclic coloring of plane graphs. In this paper, we study the same problem when pseudo-disks are replaced by a family F\mathcal{F} of pseudo-segments (a.k.a. strings) that do not cross. In other words, any two strings of F\mathcal{F} are only allowed to "touch" each other. Such a family is said to be kk-touching if no point of the plane is contained in more than kk elements of F\mathcal{F}. We give bounds on χ(F)\chi(\mathcal{F}) as a function of kk, and in particular we show that kk-touching segments can be colored with k+5k+5 colors. This partially answers a question of Hlin\v{e}n\'y (1998) on the chromatic number of contact systems of strings.Comment: 19 pages. A preliminary version of this work appeared in the proceedings of EuroComb'09 under the title "Coloring a set of touching strings

    Optimality program in segment and string graphs

    Full text link
    Planar graphs are known to allow subexponential algorithms running in time 2O(n)2^{O(\sqrt n)} or 2O(nlogn)2^{O(\sqrt n \log n)} for most of the paradigmatic problems, while the brute-force time 2Θ(n)2^{\Theta(n)} is very likely to be asymptotically best on general graphs. Intrigued by an algorithm packing curves in 2O(n2/3logn)2^{O(n^{2/3}\log n)} by Fox and Pach [SODA'11], we investigate which problems have subexponential algorithms on the intersection graphs of curves (string graphs) or segments (segment intersection graphs) and which problems have no such algorithms under the ETH (Exponential Time Hypothesis). Among our results, we show that, quite surprisingly, 3-Coloring can also be solved in time 2O(n2/3logO(1)n)2^{O(n^{2/3}\log^{O(1)}n)} on string graphs while an algorithm running in time 2o(n)2^{o(n)} for 4-Coloring even on axis-parallel segments (of unbounded length) would disprove the ETH. For 4-Coloring of unit segments, we show a weaker ETH lower bound of 2o(n2/3)2^{o(n^{2/3})} which exploits the celebrated Erd\H{o}s-Szekeres theorem. The subexponential running time also carries over to Min Feedback Vertex Set but not to Min Dominating Set and Min Independent Dominating Set.Comment: 19 pages, 15 figure

    A Self-Linking Invariant of Virtual Knots

    Full text link
    In this paper we introduce a new invariant of virtual knots and links that is non-trivial for infinitely many virtuals, but is trivial on classical knots and links. The invariant is initially be expressed in terms of a relative of the bracket polynomial and then extracted from this polynomial in terms of its exponents, particularly for the case of knots. This analog of the bracket polynomial will be denoted {K} (with curly brackets) and called the binary bracket polynomial. The key to the combinatorics of the invariant is an interpretation of the state sum in terms of 2-colorings of the associated diagrams. For virtual knots, the new invariant, J(K), is a restriction of the writhe to the odd crossings of the diagram (A crossing is odd if it links an odd number of crossings in the Gauss code of the knot. The set of odd crossings is empty for a classical knot.) For K a virtual knot, J(K) non-zero implies that K is non-trivial, non-classical and inequivalent to its planar mirror image. The paper also condsiders generalizations of the two-fold coloring of the states of the binary bracket to cases of three and more colors. Relationships with graph coloring and the Four Color Theorem are discussed.Comment: 36 pages, 22 figures, LaTeX documen
    corecore