16 research outputs found

    Content Based Document Recommender using Deep Learning

    Full text link
    With the recent advancements in information technology there has been a huge surge in amount of data available. But information retrieval technology has not been able to keep up with this pace of information generation resulting in over spending of time for retrieving relevant information. Even though systems exist for assisting users to search a database along with filtering and recommending relevant information, but recommendation system which uses content of documents for recommendation still have a long way to mature. Here we present a Deep Learning based supervised approach to recommend similar documents based on the similarity of content. We combine the C-DSSM model with Word2Vec distributed representations of words to create a novel model to classify a document pair as relevant/irrelavant by assigning a score to it. Using our model retrieval of documents can be done in O(1) time and the memory complexity is O(n), where n is number of documents.Comment: Accepted in ICICI 2017, Coimbatore, Indi

    Cross-Document Pattern Matching

    Get PDF
    We study a new variant of the string matching problem called cross-document string matching, which is the problem of indexing a collection of documents to support an efficient search for a pattern in a selected document, where the pattern itself is a substring of another document. Several variants of this problem are considered, and efficient linear-space solutions are proposed with query time bounds that either do not depend at all on the pattern size or depend on it in a very limited way (doubly logarithmic). As a side result, we propose an improved solution to the weighted level ancestor problem

    Dynamic Range Majority Data Structures

    Full text link
    Given a set PP of coloured points on the real line, we study the problem of answering range α\alpha-majority (or "heavy hitter") queries on PP. More specifically, for a query range QQ, we want to return each colour that is assigned to more than an α\alpha-fraction of the points contained in QQ. We present a new data structure for answering range α\alpha-majority queries on a dynamic set of points, where α(0,1)\alpha \in (0,1). Our data structure uses O(n) space, supports queries in O((lgn)/α)O((\lg n) / \alpha) time, and updates in O((lgn)/α)O((\lg n) / \alpha) amortized time. If the coordinates of the points are integers, then the query time can be improved to O(lgn/(αlglgn)+(lg(1/α))/α))O(\lg n / (\alpha \lg \lg n) + (\lg(1/\alpha))/\alpha)). For constant values of α\alpha, this improved query time matches an existing lower bound, for any data structure with polylogarithmic update time. We also generalize our data structure to handle sets of points in d-dimensions, for d2d \ge 2, as well as dynamic arrays, in which each entry is a colour.Comment: 16 pages, Preliminary version appeared in ISAAC 201
    corecore