482 research outputs found

    Clinical Applications of Artificial Intelligence in Glaucoma

    Get PDF
    Ophthalmology is one of the major imaging-intensive fields of medicine and thus has potential for extensive applications of artificial intelligence (AI) to advance diagnosis, drug efficacy, and other treatment-related aspects of ocular disease. AI has made impressive progress in ophthalmology within the past few years and two autonomous AIenabled systems have received US regulatory approvals for autonomously screening for mid-level or advanced diabetic retinopathy and macular edema. While no autonomous AI-enabled system for glaucoma screening has yet received US regulatory approval, numerous assistive AI-enabled software tools are already employed in commercialized instruments for quantifying retinal images and visual fields to augment glaucoma research and clinical practice. In this literature review (non-systematic), we provide an overview of AI applications in glaucoma, and highlight some limitations and considerations for AI integration and adoption into clinical practice

    Image analysis algorithms for feature extraction in eye fundus images

    Get PDF
    Retinal images are widely used for diagnostic purposes by ophthalmolo- gists. Therefore, these images are suitable for digital image analysis for their visual enhancement and pathological risk or damage detection. Here, we implement a lu- minosity and contrast enhancement technique based on domain knowledge. We also review and analyze a previous approach in optic nerve head segmentation to extend its applicability to non circular shaped contours. We introduce a di erent strategy based on the use of active contours

    The Impact of Artificial Intelligence and Deep Learning in Eye Diseases: A Review

    Get PDF
    Artificial intelligence (AI) is a subset of computer science dealing with the development and training of algorithms that try to replicate human intelligence. We report a clinical overview of the basic principles of AI that are fundamental to appreciating its application to ophthalmology practice. Here, we review the most common eye diseases, focusing on some of the potential challenges and limitations emerging with the development and application of this new technology into ophthalmology

    REFUGE Challenge: A unified framework for evaluating automated methods for glaucoma assessment from fundus photographs

    Full text link
    [EN] Glaucoma is one of the leading causes of irreversible but preventable blindness in working age populations. Color fundus photography (CFP) is the most cost-effective imaging modality to screen for retinal disorders. However, its application to glaucoma has been limited to the computation of a few related biomarkers such as the vertical cup-to-disc ratio. Deep learning approaches, although widely applied for medical image analysis, have not been extensively used for glaucoma assessment due to the limited size of the available data sets. Furthermore, the lack of a standardize benchmark strategy makes difficult to compare existing methods in a uniform way. In order to overcome these issues we set up the Retinal Fundus Glaucoma Challenge, REFUGE (https://refuge.grand-challenge.org), held in conjunction with MIC-CAI 2018. The challenge consisted of two primary tasks, namely optic disc/cup segmentation and glaucoma classification. As part of REFUGE, we have publicly released a data set of 1200 fundus images with ground truth segmentations and clinical glaucoma labels, currently the largest existing one. We have also built an evaluation framework to ease and ensure fairness in the comparison of different models, encouraging the development of novel techniques in the field. 12 teams qualified and participated in the online challenge. This paper summarizes their methods and analyzes their corresponding results. In particular, we observed that two of the top-ranked teams outperformed two human experts in the glaucoma classification task. Furthermore, the segmentation results were in general consistent with the ground truth annotations, with complementary outcomes that can be further exploited by ensembling the results.This work was supported by the Christian Doppler Research Association, the Austrian Federal Ministry for Digital and Economic Affairs and the National Foundation for Research, Technology and Development, J.I.O is supported by WWTF (Medical University of Vienna: AugUniWien/FA7464A0249, University of Vienna: VRG12- 009). Team Masker is supported by Natural Science Foundation of Guangdong Province of China (Grant 2017A030310647). Team BUCT is partially supported by the National Natural Science Foundation of China (Grant 11571031). The authors would also like to thank REFUGE study group for collaborating with this challenge.Orlando, JI.; Fu, H.; Breda, JB.; Van Keer, K.; Bathula, DR.; Diaz-Pinto, A.; Fang, R.... (2020). REFUGE Challenge: A unified framework for evaluating automated methods for glaucoma assessment from fundus photographs. Medical Image Analysis. 59:1-21. https://doi.org/10.1016/j.media.2019.101570S12159Abramoff, M. D., Garvin, M. K., & Sonka, M. (2010). Retinal Imaging and Image Analysis. IEEE Reviews in Biomedical Engineering, 3, 169-208. doi:10.1109/rbme.2010.2084567Abrร moff, M. D., Lavin, P. T., Birch, M., Shah, N., & Folk, J. C. (2018). Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. npj Digital Medicine, 1(1). doi:10.1038/s41746-018-0040-6Al-Bander, B., Williams, B., Al-Nuaimy, W., Al-Taee, M., Pratt, H., & Zheng, Y. (2018). Dense Fully Convolutional Segmentation of the Optic Disc and Cup in Colour Fundus for Glaucoma Diagnosis. Symmetry, 10(4), 87. doi:10.3390/sym10040087Almazroa, A., Burman, R., Raahemifar, K., & Lakshminarayanan, V. (2015). Optic Disc and Optic Cup Segmentation Methodologies for Glaucoma Image Detection: A Survey. Journal of Ophthalmology, 2015, 1-28. doi:10.1155/2015/180972Burlina, P. M., Joshi, N., Pekala, M., Pacheco, K. D., Freund, D. E., & Bressler, N. M. (2017). Automated Grading of Age-Related Macular Degeneration From Color Fundus Images Using Deep Convolutional Neural Networks. JAMA Ophthalmology, 135(11), 1170. doi:10.1001/jamaophthalmol.2017.3782Carmona, E. J., Rincรณn, M., Garcรญa-Feijoรณ, J., & Martรญnez-de-la-Casa, J. M. (2008). Identification of the optic nerve head with genetic algorithms. Artificial Intelligence in Medicine, 43(3), 243-259. doi:10.1016/j.artmed.2008.04.005Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16, 321-357. doi:10.1613/jair.953Christopher, M., Belghith, A., Bowd, C., Proudfoot, J. A., Goldbaum, M. H., Weinreb, R. N., โ€ฆ Zangwill, L. M. (2018). Performance of Deep Learning Architectures and Transfer Learning for Detecting Glaucomatous Optic Neuropathy in Fundus Photographs. Scientific Reports, 8(1). doi:10.1038/s41598-018-35044-9De Fauw, J., Ledsam, J. R., Romera-Paredes, B., Nikolov, S., Tomasev, N., Blackwell, S., โ€ฆ Ronneberger, O. (2018). Clinically applicable deep learning for diagnosis and referral in retinal disease. Nature Medicine, 24(9), 1342-1350. doi:10.1038/s41591-018-0107-6Decenciรจre, E., Zhang, X., Cazuguel, G., Lay, B., Cochener, B., Trone, C., โ€ฆ Klein, J.-C. (2014). FEEDBACK ON A PUBLICLY DISTRIBUTED IMAGE DATABASE: THE MESSIDOR DATABASE. Image Analysis & Stereology, 33(3), 231. doi:10.5566/ias.1155DeLong, E. R., DeLong, D. M., & Clarke-Pearson, D. L. (1988). Comparing the Areas under Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach. Biometrics, 44(3), 837. doi:10.2307/2531595European Glaucoma Society Terminology and Guidelines for Glaucoma, 4th Edition - Part 1Supported by the EGS Foundation. (2017). British Journal of Ophthalmology, 101(4), 1-72. doi:10.1136/bjophthalmol-2016-egsguideline.001Farbman, Z., Fattal, R., Lischinski, D., & Szeliski, R. (2008). Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Transactions on Graphics, 27(3), 1-10. doi:10.1145/1360612.1360666Fu, H., Cheng, J., Xu, Y., Wong, D. W. K., Liu, J., & Cao, X. (2018). Joint Optic Disc and Cup Segmentation Based on Multi-Label Deep Network and Polar Transformation. IEEE Transactions on Medical Imaging, 37(7), 1597-1605. doi:10.1109/tmi.2018.2791488Gรณmez-Valverde, J. J., Antรณn, A., Fatti, G., Liefers, B., Herranz, A., Santos, A., โ€ฆ Ledesma-Carbayo, M. J. (2019). Automatic glaucoma classification using color fundus images based on convolutional neural networks and transfer learning. Biomedical Optics Express, 10(2), 892. doi:10.1364/boe.10.000892Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A., โ€ฆ Webster, D. R. (2016). Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 316(22), 2402. doi:10.1001/jama.2016.17216Hagiwara, Y., Koh, J. E. W., Tan, J. H., Bhandary, S. V., Laude, A., Ciaccio, E. J., โ€ฆ Acharya, U. R. (2018). Computer-aided diagnosis of glaucoma using fundus images: A review. Computer Methods and Programs in Biomedicine, 165, 1-12. doi:10.1016/j.cmpb.2018.07.012Haleem, M. S., Han, L., van Hemert, J., & Li, B. (2013). Automatic extraction of retinal features from colour retinal images for glaucoma diagnosis: A review. Computerized Medical Imaging and Graphics, 37(7-8), 581-596. doi:10.1016/j.compmedimag.2013.09.005Holm, S., Russell, G., Nourrit, V., & McLoughlin, N. (2017). DR HAGISโ€”a fundus image database for the automatic extraction of retinal surface vessels from diabetic patients. Journal of Medical Imaging, 4(1), 014503. doi:10.1117/1.jmi.4.1.014503Joshi, G. D., Sivaswamy, J., & Krishnadas, S. R. (2011). Optic Disk and Cup Segmentation From Monocular Color Retinal Images for Glaucoma Assessment. IEEE Transactions on Medical Imaging, 30(6), 1192-1205. doi:10.1109/tmi.2011.2106509Kaggle, 2015. Diabetic Retinopathy Detection. https://www.kaggle.com/c/diabetic-retinopathy-detection. [Online; accessed 10-January-2019].Kumar, J. R. H., Seelamantula, C. S., Kamath, Y. S., & Jampala, R. (2019). Rim-to-Disc Ratio Outperforms Cup-to-Disc Ratio for Glaucoma Prescreening. Scientific Reports, 9(1). doi:10.1038/s41598-019-43385-2Lavinsky, F., Wollstein, G., Tauber, J., & Schuman, J. S. (2017). The Future of Imaging in Detecting Glaucoma Progression. Ophthalmology, 124(12), S76-S82. doi:10.1016/j.ophtha.2017.10.011Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. doi:10.1109/5.726791Li, Z., He, Y., Keel, S., Meng, W., Chang, R. T., & He, M. (2018). Efficacy of a Deep Learning System for Detecting Glaucomatous Optic Neuropathy Based on Color Fundus Photographs. Ophthalmology, 125(8), 1199-1206. doi:10.1016/j.ophtha.2018.01.023Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., โ€ฆ Sรกnchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60-88. doi:10.1016/j.media.2017.07.005Liu, S., Graham, S. L., Schulz, A., Kalloniatis, M., Zangerl, B., Cai, W., โ€ฆ You, Y. (2018). A Deep Learning-Based Algorithm Identifies Glaucomatous Discs Using Monoscopic Fundus Photographs. Ophthalmology Glaucoma, 1(1), 15-22. doi:10.1016/j.ogla.2018.04.002Lowell, J., Hunter, A., Steel, D., Basu, A., Ryder, R., Fletcher, E., & Kennedy, L. (2004). Optic Nerve Head Segmentation. IEEE Transactions on Medical Imaging, 23(2), 256-264. doi:10.1109/tmi.2003.823261Maier-Hein, L., Eisenmann, M., Reinke, A., Onogur, S., Stankovic, M., Scholz, P., โ€ฆ Kopp-Schneider, A. (2018). Why rankings of biomedical image analysis competitions should be interpreted with care. Nature Communications, 9(1). doi:10.1038/s41467-018-07619-7Miri, M. S., Abramoff, M. D., Lee, K., Niemeijer, M., Wang, J.-K., Kwon, Y. H., & Garvin, M. K. (2015). Multimodal Segmentation of Optic Disc and Cup From SD-OCT and Color Fundus Photographs Using a Machine-Learning Graph-Based Approach. IEEE Transactions on Medical Imaging, 34(9), 1854-1866. doi:10.1109/tmi.2015.2412881Niemeijer, M., van Ginneken, B., Cree, M. J., Mizutani, A., Quellec, G., Sanchez, C. I., โ€ฆ Abramoff, M. D. (2010). Retinopathy Online Challenge: Automatic Detection of Microaneurysms in Digital Color Fundus Photographs. IEEE Transactions on Medical Imaging, 29(1), 185-195. doi:10.1109/tmi.2009.2033909Odstrcilik, J., Kolar, R., Budai, A., Hornegger, J., Jan, J., Gazarek, J., โ€ฆ Angelopoulou, E. (2013). Retinal vessel segmentation by improved matched filtering: evaluation on a new highโ€resolution fundus image database. IET Image Processing, 7(4), 373-383. doi:10.1049/iet-ipr.2012.0455Orlando, J. I., Prokofyeva, E., & Blaschko, M. B. (2017). A Discriminatively Trained Fully Connected Conditional Random Field Model for Blood Vessel Segmentation in Fundus Images. IEEE Transactions on Biomedical Engineering, 64(1), 16-27. doi:10.1109/tbme.2016.2535311Park, S. J., Shin, J. Y., Kim, S., Son, J., Jung, K.-H., & Park, K. H. (2018). A Novel Fundus Image Reading Tool for Efficient Generation of a Multi-dimensional Categorical Image Database for Machine Learning Algorithm Training. Journal of Korean Medical Science, 33(43). doi:10.3346/jkms.2018.33.e239Poplin, R., Varadarajan, A. V., Blumer, K., Liu, Y., McConnell, M. V., Corrado, G. S., โ€ฆ Webster, D. R. (2018). Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nature Biomedical Engineering, 2(3), 158-164. doi:10.1038/s41551-018-0195-0Porwal, P., Pachade, S., Kamble, R., Kokare, M., Deshmukh, G., Sahasrabuddhe, V., & Meriaudeau, F. (2018). Indian Diabetic Retinopathy Image Dataset (IDRiD): A Database for Diabetic Retinopathy Screening Research. Data, 3(3), 25. doi:10.3390/data3030025Prokofyeva, E., & Zrenner, E. (2012). Epidemiology of Major Eye Diseases Leading to Blindness in Europe: A Literature Review. Ophthalmic Research, 47(4), 171-188. doi:10.1159/000329603Raghavendra, U., Fujita, H., Bhandary, S. V., Gudigar, A., Tan, J. H., & Acharya, U. R. (2018). Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images. Information Sciences, 441, 41-49. doi:10.1016/j.ins.2018.01.051Reis, A. S. C., Sharpe, G. P., Yang, H., Nicolela, M. T., Burgoyne, C. F., & Chauhan, B. C. (2012). Optic Disc Margin Anatomy in Patients with Glaucoma and Normal Controls with Spectral Domain Optical Coherence Tomography. Ophthalmology, 119(4), 738-747. doi:10.1016/j.ophtha.2011.09.054Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., โ€ฆ Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision, 115(3), 211-252. doi:10.1007/s11263-015-0816-ySchmidt-Erfurth, U., Sadeghipour, A., Gerendas, B. S., Waldstein, S. M., & Bogunoviฤ‡, H. (2018). Artificial intelligence in retina. Progress in Retinal and Eye Research, 67, 1-29. doi:10.1016/j.preteyeres.2018.07.004Sevastopolsky, A. (2017). Optic disc and cup segmentation methods for glaucoma detection with modification of U-Net convolutional neural network. Pattern Recognition and Image Analysis, 27(3), 618-624. doi:10.1134/s1054661817030269Taha, A. A., & Hanbury, A. (2015). Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Medical Imaging, 15(1). doi:10.1186/s12880-015-0068-xThakur, N., & Juneja, M. (2018). Survey on segmentation and classification approaches of optic cup and optic disc for diagnosis of glaucoma. Biomedical Signal Processing and Control, 42, 162-189. doi:10.1016/j.bspc.2018.01.014Tham, Y.-C., Li, X., Wong, T. Y., Quigley, H. A., Aung, T., & Cheng, C.-Y. (2014). Global Prevalence of Glaucoma and Projections of Glaucoma Burden through 2040. Ophthalmology, 121(11), 2081-2090. doi:10.1016/j.ophtha.2014.05.013Johnson, S. S., Wang, J.-K., Islam, M. S., Thurtell, M. J., Kardon, R. H., & Garvin, M. K. (2018). Local Estimation of the Degree of Optic Disc Swelling from Color Fundus Photography. Lecture Notes in Computer Science, 277-284. doi:10.1007/978-3-030-00949-6_33Trucco, E., Ruggeri, A., Karnowski, T., Giancardo, L., Chaum, E., Hubschman, J. P., โ€ฆ Dhillon, B. (2013). Validating Retinal Fundus Image Analysis Algorithms: Issues and a Proposal. Investigative Opthalmology & Visual Science, 54(5), 3546. doi:10.1167/iovs.12-10347Vergara, I. A., Norambuena, T., Ferrada, E., Slater, A. W., & Melo, F. (2008). StAR: a simple tool for the statistical comparison of ROC curves. BMC Bioinformatics, 9(1). doi:10.1186/1471-2105-9-265Wu, Z., Shen, C., & van den Hengel, A. (2019). Wider or Deeper: Revisiting the ResNet Model for Visual Recognition. Pattern Recognition, 90, 119-133. doi:10.1016/j.patcog.2019.01.006Zheng, Y., Hijazi, M. H. A., & Coenen, F. (2012). Automated ยซDisease/No Diseaseยป Grading of Age-Related Macular Degeneration by an Image Mining Approach. Investigative Opthalmology & Visual Science, 53(13), 8310. doi:10.1167/iovs.12-957

    Dual Machine-Learning system to aid Glaucoma Diagnosis using disc and cup feature extraction.

    Get PDF
    Glaucoma is a degenerative disease that affects vision, causing damage to the optic nerve that ends in vision loss. The classic techniques to detect it have undergone a great change since the intrusion of machine learning techniques into the processing of eye fundus images. Several works focus on training a convolutional neural network (CNN) by brute force, while others use segmentation and feature extraction techniques to detect glaucoma. In this work, a diagnostic aid tool to detect glaucoma using eye fundus images is developed, trained and tested. It consists of two subsystems that are independently trained and tested, combining their results to improve glaucoma detection. The first subsystem applies machine learning and segmentation techniques to detect optic disc and cup independently, combine them and extract their physical and positional features. The second one applies transfer learning techniques to a pre-trained CNN to detect glaucoma through the analysis of the complete eye fundus images. The results of both systems are combined to discriminate positive cases of glaucoma and improve final detection. The results show that this system achieves a higher classification rate than previous works. The system also provides information on the basis for the proposed diagnosis suggestion that can help the ophthalmologist to accept or modify it

    ๋”ฅ๋Ÿฌ๋‹์„ ์ด์šฉํ•œ ๋…น๋‚ด์žฅ ์ง„๋‹จ ๋ณด์กฐ ์‹œ์Šคํ…œ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ํ˜‘๋™๊ณผ์ • ๋ฐ”์ด์˜ค์—”์ง€๋‹ˆ์–ด๋ง์ „๊ณต, 2021. 2. ๊น€ํฌ์ฐฌ.๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋”ฅ ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜์˜ ์ง„๋‹จ ๋ณด์กฐ ์‹œ์Šคํ…œ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•์ด ๋…น๋‚ด์žฅ ๋ฐ์ดํ„ฐ์— ์ ์šฉ๋˜์—ˆ๊ณ  ๊ฒฐ๊ณผ๋ฅผ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ์ฒซ๋ฒˆ์งธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ŠคํŽ™ํŠธ๋Ÿผ์˜์—ญ ๋น›๊ฐ„์„ญ๋‹จ์ธต์ดฌ์˜๊ธฐ(SD-OCT)๋ฅผ ๋”ฅ ๋Ÿฌ๋‹ ๋ถ„๋ฅ˜ ๊ธฐ๋ฅผ ์ด์šฉํ•ด ๋ถ„์„ํ•˜์˜€๋‹ค. ์ŠคํŽ™ํŠธ๋Ÿผ์˜์—ญ ๋น›๊ฐ„์„ญ๋‹จ์ธต์ดฌ์˜๊ธฐ๋Š” ๋…น๋‚ด์žฅ์œผ๋กœ ์ธํ•œ ๊ตฌ์กฐ์  ์†์ƒ์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉํ•˜๋Š” ์žฅ๋น„์ด๋‹ค. ๋ถ„๋ฅ˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ํ•ฉ์„ฑ ๊ณฑ ์‹ ๊ฒฝ๋ง์„ ์ด์šฉํ•ด ๊ฐœ๋ฐœ ๋˜์—ˆ์œผ๋ฉฐ, ์ŠคํŽ™ํŠธ๋Ÿผ์˜์—ญ ๋น›๊ฐ„์„ญ๋‹จ์ธต์ดฌ์˜๊ธฐ์˜ ๋ง๋ง‰์‹ ๊ฒฝ์„ฌ์œ ์ธต(RNFL)๊ณผ ํ™ฉ๋ฐ˜๋ถ€ ์‹ ๊ฒฝ์ ˆ์„ธํฌ๋‚ด๋ง์ƒ์ธต (GCIPL) ์‚ฌ์ง„์„ ์ด์šฉํ•ด ํ•™์Šตํ–ˆ๋‹ค. ์ œ์•ˆํ•œ ๋ฐฉ๋ฒ•์€ ๋‘๊ฐœ์˜ ์ด๋ฏธ์ง€๋ฅผ ์ž…๋ ฅ์œผ๋กœ ๋ฐ›๋Š” ์ด์ค‘์ž…๋ ฅํ•ฉ์„ฑ๊ณฑ์‹ ๊ฒฝ๋ง(DICNN)์ด๋ฉฐ, ๋”ฅ ๋Ÿฌ๋‹ ๋ถ„๋ฅ˜์—์„œ ํšจ๊ณผ์ ์ธ ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ์ด์ค‘์ž…๋ ฅํ•ฉ์„ฑ๊ณฑ์‹ ๊ฒฝ๋ง์€ ๋ง๋ง‰์‹ ๊ฒฝ์„ฌ์œ ์ธต ๊ณผ ์‹ ๊ฒฝ์ ˆ์„ธํฌ์ธต ์˜ ๋‘๊ป˜ ์ง€๋„๋ฅผ ์ด์šฉํ•˜์—ฌ ํ•™์Šต ๋์œผ๋ฉฐ, ํ•™์Šต๋œ ๋„คํŠธ์›Œํฌ๋Š” ๋…น๋‚ด์žฅ๊ณผ ์ •์ƒ ๊ตฐ์„ ๊ตฌ๋ถ„ํ•œ๋‹ค. ์ด์ค‘์ž…๋ ฅํ•ฉ์„ฑ๊ณฑ์‹ ๊ฒฝ๋ง์€ ์ •ํ™•๋„์™€ ์ˆ˜์‹ ๊ธฐ๋™์ž‘ํŠน์„ฑ๊ณก์„ ํ•˜๋ฉด์  (AUC)์œผ๋กœ ํ‰๊ฐ€ ๋˜์—ˆ๋‹ค. ๋ง๋ง‰์‹ ๊ฒฝ์„ฌ์œ ์ธต๊ณผ ์‹ ๊ฒฝ์ ˆ์„ธํฌ์ธต ๋‘๊ป˜ ์ง€๋„๋กœ ํ•™์Šต๋œ ์„ค๊ณ„ํ•œ ๋”ฅ ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ์กฐ๊ธฐ ๋…น๋‚ด์žฅ๊ณผ ์ •์ƒ ๊ตฐ์„ ๋ถ„๋ฅ˜ํ•˜๋Š” ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๊ณ  ๋น„๊ตํ•˜์˜€๋‹ค. ์„ฑ๋Šฅํ‰๊ฐ€ ๊ฒฐ๊ณผ ์ด์ค‘์ž…๋ ฅํ•ฉ์„ฑ๊ณฑ์‹ ๊ฒฝ๋ง์€ ์กฐ๊ธฐ ๋…น๋‚ด์žฅ์„ ๋ถ„๋ฅ˜ํ•˜๋Š”๋ฐ 0.869์˜ ์ˆ˜์‹ ๊ธฐ๋™์ž‘ํŠน์„ฑ๊ณก์„ ์˜๋„“์ด์™€ 0.921์˜ ๋ฏผ๊ฐ๋„, 0.756์˜ ํŠน์ด๋„๋ฅผ ๋ณด์˜€๋‹ค. ๋‘๋ฒˆ์งธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋”ฅ ๋Ÿฌ๋‹์„ ์ด์šฉํ•ด ์‹œ์‹ ๊ฒฝ์œ ๋‘์‚ฌ์ง„์˜ ํ•ด์ƒ๋„์™€ ๋Œ€๋น„, ์ƒ‰๊ฐ, ๋ฐ๊ธฐ๋ฅผ ๋ณด์ •ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์‹œ์‹ ๊ฒฝ์œ ๋‘์‚ฌ์ง„์€ ๋…น๋‚ด์žฅ์„ ์ง„๋‹จํ•˜๋Š”๋ฐ ์žˆ์–ด ํšจ๊ณผ์ ์ธ ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ, ๋…น๋‚ด์žฅ์˜ ์ง„๋‹จ์—์„œ ํ™˜์ž์˜ ๋‚˜, ์ž‘์€ ๋™๊ณต, ๋งค์ฒด ๋ถˆํˆฌ๋ช…์„ฑ ๋“ฑ์œผ๋กœ ์ธํ•ด ํ‰๊ฐ€๊ฐ€ ์–ด๋ ค์šด ๊ฒฝ์šฐ๊ฐ€ ์žˆ๋‹ค. ์ดˆ ํ•ด์ƒ๋„์™€ ๋ณด์ • ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ดˆ ํ•ด์ƒ๋„ ์ ๋Œ€์ ์ƒ์„ฑ์‹ ๊ฒฝ๋ง์„ ํ†ตํ•ด ๊ฐœ๋ฐœ๋˜์—ˆ๋‹ค. ์›๋ณธ ๊ณ ํ•ด์ƒ๋„์˜ ์‹œ์‹ ๊ฒฝ ์œ ๋‘ ์‚ฌ์ง„์€ ์ €ํ•ด์ƒ๋„ ์‚ฌ์ง„์œผ๋กœ ์ถ•์†Œ๋˜๊ณ , ๋ณด์ •๋œ ๊ณ ํ•ด์ƒ๋„ ์‹œ์‹ ๊ฒฝ์œ ๋‘์‚ฌ์ง„์œผ๋กœ ๋ณด์ • ๋˜๋ฉฐ, ๋ณด์ •๋œ ์‚ฌ์ง„์€ ์‹œ์‹ ๊ฒฝ์—ฌ๋ฐฑ์˜ ๊ฐ€์‹œ์„ฑ๊ณผ ๊ทผ์ฒ˜ ํ˜ˆ๊ด€์„ ์ž˜ ๋ณด์ด๋„๋ก ํ›„์ฒ˜๋ฆฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ด์šฉํ•œ๋‹ค. ์ €ํ•ด์ƒ๋„์ด๋ฏธ์ง€๋ฅผ ๋ณด์ •๋œ ๊ณ ํ•ด์ƒ๋„์ด๋ฏธ์ง€๋กœ ๋ณต์›ํ•˜๋Š” ๊ณผ์ •์„ ์ดˆํ•ด์ƒ๋„์ ๋Œ€์ ์‹ ๊ฒฝ๋ง์„ ํ†ตํ•ด ํ•™์Šตํ•œ๋‹ค. ์„ค๊ณ„ํ•œ ๋„คํŠธ์›Œํฌ๋Š” ์‹ ํ˜ธ ๋Œ€ ์žก์Œ ๋น„(PSNR)๊ณผ ๊ตฌ์กฐ์ ์œ ์‚ฌ์„ฑ(SSIM), ํ‰๊ท ํ‰๊ฐ€์ (MOS)๋ฅผ ์ด์šฉํ•ด ํ‰๊ฐ€ ๋˜์—ˆ๋‹ค. ํ˜„์žฌ์˜ ์—ฐ๊ตฌ๋Š” ๋”ฅ ๋Ÿฌ๋‹์ด ์•ˆ๊ณผ ์ด๋ฏธ์ง€๋ฅผ 4๋ฐฐ ํ•ด์ƒ๋„์™€ ๊ตฌ์กฐ์ ์ธ ์„ธ๋ถ€ ํ•ญ๋ชฉ์ด ์ž˜ ๋ณด์ด๋„๋ก ๊ฐœ์„ ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ํ–ฅ์ƒ๋œ ์‹œ์‹ ๊ฒฝ์œ ๋‘ ์‚ฌ์ง„์€ ์‹œ์‹ ๊ฒฝ์˜ ๋ณ‘๋ฆฌํ•™์ ์ธ ํŠน์„ฑ์˜ ์ง„๋‹จ ์ •ํ™•๋„๋ฅผ ๋ช…ํ™•ํžˆ ํ–ฅ์ƒ์‹œํ‚จ๋‹ค. ์„ฑ๋Šฅํ‰๊ฐ€๊ฒฐ๊ณผ ํ‰๊ท  PSNR์€ 25.01 SSIM์€ 0.75 MOS๋Š” 4.33์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์„ธ๋ฒˆ์งธ ์—ฐ๊ตฌ์—์„œ๋Š” ํ™˜์ž ์ •๋ณด์™€ ์•ˆ๊ณผ ์˜์ƒ(์‹œ์‹ ๊ฒฝ์œ ๋‘ ์‚ฌ์ง„๊ณผ ๋ถ‰์€์ƒ‰์ด ์—†๋Š” ๋ง๋ง‰์‹ ๊ฒฝ์„ฌ์œ ์ธต ์‚ฌ์ง„)์„ ์ด์šฉํ•ด ๋…น๋‚ด์žฅ ์˜์‹ฌ ํ™˜์ž๋ฅผ ๋ถ„๋ณ„ํ•˜๊ณ  ๋…น๋‚ด์žฅ ์˜์‹ฌ ํ™˜์ž์˜ ๋ฐœ๋ณ‘ ์—ฐ์ˆ˜๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ๋”ฅ ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ์ž„์ƒ ๋ฐ์ดํ„ฐ๋“ค์€ ๋…น๋‚ด์žฅ์„ ์ง„๋‹จํ•˜๊ฑฐ๋‚˜ ์˜ˆ์ธกํ•˜๋Š”๋ฐ ์œ ์šฉํ•œ ์ •๋ณด๋“ค์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ, ์–ด๋–ป๊ฒŒ ๋‹ค์–‘ํ•œ ์œ ํ˜•์˜ ์ž„์ƒ์ •๋ณด๋“ค์„ ์กฐํ•ฉํ•˜๋Š” ๊ฒƒ์ด ๊ฐ๊ฐ์˜ ํ™˜์ž๋“ค์— ๋Œ€ํ•ด ์ž ์žฌ์ ์ธ ๋…น๋‚ด์žฅ์„ ์˜ˆ์ธกํ•˜๋Š”๋ฐ ์–ด๋–ค ์˜ํ–ฅ์„ ์ฃผ๋Š”์ง€์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰ ๋œ ์ ์ด ์—†๋‹ค. ๋…น๋‚ด์žฅ ์˜ ์‹ฌ์ž ๋ถ„๋ฅ˜์™€ ๋ฐœ๋ณ‘ ๋…„ ์ˆ˜ ์˜ˆ์ธก์€ ํ•ฉ์„ฑ ๊ณฑ ์ž๋™ ์ธ์ฝ”๋”(CAE)๋ฅผ ๋น„ ์ง€๋„์  ํŠน์„ฑ ์ถ”์ถœ ๊ธฐ๋กœ ์‚ฌ์šฉํ•˜๊ณ , ๊ธฐ๊ณ„ํ•™์Šต ๋ถ„๋ฅ˜ ๊ธฐ์™€ ํšŒ๊ท€๊ธฐ๋ฅผ ํ†ตํ•ด ์ง„ํ–‰ํ•˜์˜€๋‹ค. ์„ค๊ณ„ํ•œ ๋ชจ๋ธ์€ ์ •ํ™•๋„์™€ ํ‰๊ท ์ œ๊ณฑ์˜ค์ฐจ(MSE)๋ฅผ ํ†ตํ•ด ํ‰๊ฐ€ ๋˜์—ˆ์œผ๋ฉฐ, ์ด๋ฏธ์ง€ ํŠน์ง•๊ณผ ํ™˜์ž ํŠน์ง•์€ ์กฐํ•ฉํ–ˆ์„ ๋•Œ ๋…น๋‚ด์žฅ ์˜์‹ฌ ํ™˜์ž ๋ถ„๋ฅ˜์™€ ๋ฐœ๋ณ‘ ๋…„ ์ˆ˜ ์˜ˆ์ธก์˜ ์„ฑ๋Šฅ์ด ์ด๋ฏธ์ง€ ํŠน์ง•๊ณผ ํ™˜์ž ํŠน์ง•์„ ๊ฐ๊ฐ ์ผ์„ ๋•Œ๋ณด๋‹ค ์„ฑ๋Šฅ์ด ์ข‹์•˜๋‹ค. ์ •๋‹ต๊ณผ์˜ MSE๋Š” 2.613์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋”ฅ ๋Ÿฌ๋‹์„ ์ด์šฉํ•ด ๋…น๋‚ด์žฅ ๊ด€๋ จ ์ž„์ƒ ๋ฐ์ดํ„ฐ ์ค‘ ๋ง๋ง‰์‹ ๊ฒฝ์„ฌ์œ ์ธต, ์‹ ๊ฒฝ์ ˆ์„ธํฌ์ธต ์‚ฌ์ง„์„ ๋…น๋‚ด์žฅ ์ง„๋‹จ์— ์ด์šฉ๋˜์—ˆ๊ณ , ์‹œ์‹ ๊ฒฝ์œ ๋‘ ์‚ฌ์ง„์€ ์‹œ์‹ ๊ฒฝ์˜ ๋ณ‘๋ฆฌํ•™์ ์ธ ์ง„๋‹จ ์ •ํ™•๋„๋ฅผ ๋†’์˜€๊ณ , ํ™˜์ž ์ •๋ณด๋Š” ๋ณด๋‹ค ์ •ํ™•ํ•œ ๋…น๋‚ด์žฅ ์˜์‹ฌ ํ™˜์ž ๋ถ„๋ฅ˜์™€ ๋ฐœ๋ณ‘ ๋…„ ์ˆ˜ ์˜ˆ์ธก์— ์ด์šฉ๋˜์—ˆ๋‹ค. ํ–ฅ์ƒ๋œ ๋…น๋‚ด์žฅ ์ง„๋‹จ ์„ฑ๋Šฅ์€ ๊ธฐ์ˆ ์ ์ด๊ณ  ์ž„์ƒ์ ์ธ ์ง€ํ‘œ๋“ค์„ ํ†ตํ•ด ๊ฒ€์ฆ๋˜์—ˆ๋‹ค.This paper presents deep learning-based methods for improving glaucoma diagnosis support systems. Novel methods were applied to glaucoma clinical cases and the results were evaluated. In the first study, a deep learning classifier for glaucoma diagnosis based on spectral-domain optical coherence tomography (SD-OCT) images was proposed and evaluated. Spectral-domain optical coherence tomography (SD-OCT) is commonly employed as an imaging modality for the evaluation of glaucomatous structural damage. The classification model was developed using convolutional neural network (CNN) as a base, and was trained with SD-OCT retinal nerve fiber layer (RNFL) and macular ganglion cell-inner plexiform layer (GCIPL) images. The proposed network architecture, termed Dual-Input Convolutional Neural Network (DICNN), showed great potential as an effective classification algorithm based on two input images. DICNN was trained with both RNFL and GCIPL thickness maps that enabled it to discriminate between normal and glaucomatous eyes. The performance of the proposed DICNN was evaluated with accuracy and area under the receiver operating characteristic curve (AUC), and was compared to other methods using these metrics. Compared to other methods, the proposed DICNN model demonstrated high diagnostic ability for the discrimination of early-stage glaucoma patients in normal subjects. AUC, sensitivity and specificity was 0.869, 0.921, 0.756 respectively. In the second study, a deep-learning method for increasing the resolution and improving the legibility of Optic-disc Photography(ODP) was proposed. ODP has been proven to be useful for optic nerve evaluation in glaucoma. But in clinical practice, limited patient cooperation, small pupil or media opacities can limit the performance of ODP. A model to enhance the resolution of ODP images, termed super-resolution, was developed using Super Resolution Generative Adversarial Network(SR-GAN). To train this model, high-resolution original ODP images were transformed into two counterparts: (1) down-scaled low-resolution ODPs, and (2) compensated high-resolution ODPs with enhanced visibility of the optic disc margin and surrounding retinal vessels which were produced using a customized image post-processing algorithm. The SR-GAN was trained to learn and recognize the differences between these two counterparts. The performance of the network was evaluated using Peak Signal to Noise Ratio (PSNR), Structural Similarity (SSIM), and Mean Opinion Score (MOS). The proposed study demonstrated that deep learning can be applied to create a generative model that is capable of producing enhanced ophthalmic images with 4x resolution and with improved structural details. The proposed method can be used to enhance ODPs and thereby significantly increase the detection accuracy of optic disc pathology. The average PSNR, SSIM and MOS was 25.01, 0.75, 4.33 respectively In the third study, a deep-learning model was used to classify suspected glaucoma and to predict subsequent glaucoma onset-year in glaucoma suspects using clinical data and retinal images (ODP & Red-free Fundus RNFL Photo). Clinical data contains useful information about glaucoma diagnosis and prediction. However, no study has been undertaken to investigate how combining different types of clinical information would be helpful for predicting the subsequent course of glaucoma in an individual patient. For this study, image features extracted using Convolutional Auto Encoder (CAE) along with clinical features were used for glaucoma suspect classification and onset-year prediction. The performance of the proposed model was evaluated using accuracy and Mean Squared Error (MSE). Combing the CAE extracted image features and clinical features improved glaucoma suspect classification and on-set year prediction performance as compared to using the image features and patient features separately. The average MSE between onset-year and predicted onset year was 2.613 In this study, deep learning methodology was applied to clinical images related to glaucoma. DICNN with RNFL and GCIPL images were used for classification of glaucoma, SR-GAN with ODP images were used to increase detection accuracy of optic disc pathology, and CAE & machine learning algorithm with clinical data and retinal images was used for glaucoma suspect classification and onset-year predication. The improved glaucoma diagnosis performance was validated using both technical and clinical parameters. The proposed methods as a whole can significantly improve outcomes of glaucoma patients by early detection, prediction and enhancing detection accuracy.Contents Abstract i Contents iv List of Tables vii List of Figures viii Chapter 1 General Introduction 1 1.1 Glaucoma 1 1.2 Deep Learning for Glaucoma Diagnosis 3 1.4 Thesis Objectives 3 Chapter 2 Dual-Input Convolutional Neural Network for Glaucoma Diagnosis using Spectral-Domain Optical Coherence Tomography 6 2.1 Introduction 6 2.1.1 Background 6 2.1.2 Related Work 7 2.2 Methods 8 2.2.1 Study Design 8 2.2.2 Dataset 9 2.2.3 Dual-Input Convolutional Neural Network (DICNN) 15 2.2.4 Training Environment 18 2.2.5 Statistical Analysis 19 2.3 Results 20 2.3.1 DICNN Performance 20 2.3.1 Grad-CAM for DICNN 34 2.4 Discussion 37 2.4.1 Research Significance 37 2.4.2 Limitations 40 2.5 Conclusion 42 Chapter 3 Deep-learning-based enhanced optic-disc photography 43 3.1 Introduction 43 3.1.1 Background 43 3.1.2 Needs 44 3.1.3 Related Work 45 3.2 Methods 46 3.2.1 Study Design 46 3.2.2 Dataset 46 3.2.2.1 Details on Customized Image Post-Processing Algorithm 47 3.2.3 SR-GAN Network 50 3.2.3.1 Design of Generative Adversarial Network 50 3.2.3.2 Loss Functions 55 3.2.4 Assessment of Clinical Implications of Enhanced ODPs 58 3.2.5 Statistical Analysis 60 3.2.6 Hardware Specifications & Software Specifications 60 3.3 Results 62 3.3.1 Training Loss of Modified SR-GAN 62 3.3.2 Performance of Final Network 66 3.3.3 Clinical Validation of Enhanced ODP by MOS comparison 77 3.3.4 Comparison of DH-Detection Accuracy 79 3.4 Discussion 80 3.4.1 Research Significance 80 3.4.2 Limitations 85 3.5 Conclusion 88 Chapter 4 Deep Learning Based Prediction of Glaucoma Onset Using Retinal Image and Patient Data 89 4.1 Introduction 89 4.1.1 Background 89 4.1.2 Related Work 90 4.2 Methods 90 4.2.1 Study Design 90 4.2.2 Dataset 91 4.2.3 Design of Overall System 94 4.2.4 Design of Convolutional Auto Encoder 95 4.2.5 Glaucoma Suspect Classification 97 4.2.6 Glaucoma Onset-Year Prediction 97 4.3 Result 99 4.3.1 Performance of Designed CAE 99 4.3.2 Performance of Designed Glaucoma Suspect Classification 101 4.3.3 Performance of Designed Glaucoma Onset-Year Prediction 105 4.4 Discussion 110 4.4.1 Research Significance 110 4.4.2 Limitations 110 4.5 Conclusion 111 Chapter 5 Summary and Future Works 112 5.1 Thesis Summary 112 5.2 Limitations and Future Works 113 Bibliography 115 Abstract in Korean 127 Acknowledgement 130Docto
    • โ€ฆ
    corecore