3 research outputs found

    Real time implementation of socially acceptable collision avoidance of a low speed autonomous shuttle using the elastic band method

    Get PDF
    This paper presents the real time implementation of socially acceptable collision avoidance using the elastic band method for low speed autonomous shuttles operating in high pedestrian density environments. The modeling and validation of the research autonomous vehicle used in the experimental implementation is presented first, followed by the details of the Hardware-In-the-Loop connected and autonomous vehicle simulator used. The socially acceptable collision avoidance algorithm is formulated using the elastic band method as an online, local path modification algorithm. Parameter space based robust feedback plus feedforward steering controller design is used. Model-in-the-loop, Hardware-In-the-Loop and road testing in a proving ground are used to demonstrate the effectiveness of the real time implementation of the elastic band based socially acceptable collision avoidance method of this paper

    Path tracking with minimum time of vehicle handling inverse dynamics based on adaptive gauss pseudospectral method

    Get PDF
    Vehicle driving safety is the urgent key problem to be solved by an independent automobile development project. And it is also the premise and one of the necessary conditions for active vehicle safety. A new technique for path tracking with minimum time of vehicle handling inverse dynamics is proposed in this paper. Based on a new optimal control method – Adaptive Gauss Pseudospectral Method (AGPM), the optimal control for path tracking with minimum time problem was converted into a nonlinear programming problem which met the boundary condition and a series of path constraints including path constraint, state constraint, control constraint. And then the problem was solved using the sequential quadratic programming (SQP). The simulation results showed that the proposed method was not sensitive to the initial value and the optimization efficiency was higher compared with indirect methods and traditional direct methods. When solving the problem of path tracking with minimum time as per this method, boundary constraints and path constraints were well satisfied. The algorithm was not only precise but it could also shorten the evaluation period of vehicle handling stability and could reduce the tremendous cost for real vehicle testing. So the maneuverability of two different vehicles that complete the pylon course slalom test road with minimum time can be evaluated objectively by utilizing the method. The model correctness is verified through a real vehicle test
    corecore