606 research outputs found

    Real-time Physics Based Simulation for 3D Computer Graphics

    Get PDF
    Restoration of realistic animation is a critical part in the area of computer graphics. The goal of this sort of simulation is to imitate the behavior of the transformation in real life to the greatest extent. Physics-based simulation provides a solid background and proficient theories that can be applied in the simulation. In this dissertation, I will present real-time simulations which are physics-based in the area of terrain deformation and ship oscillations. When ground vehicles navigate on soft terrains such as sand, snow and mud, they often leave distinctive tracks. The realistic simulation of such vehicle-terrain interaction is important for ground based visual simulations and many video games. However, the existing research in terrain deformation has not addressed this issue effectively. In this dissertation, I present a new terrain deformation algorithm for simulating vehicle-terrain interaction in real time. The algorithm is based on the classic terramechanics theories, and calculates terrain deformation according to the vehicle load, velocity, tire size, and soil concentration. As a result, this algorithm can simulate different vehicle tracks on different types of terrains with different vehicle properties. I demonstrate my algorithm by vehicle tracks on soft terrain. In the field of ship oscillation simulation, I propose a new method for simulating ship motions in waves. Although there have been plenty of previous work on physics based fluid-solid simulation, most of these methods are not suitable for real-time applications. In particular, few methods are designed specifically for simulating ship motion in waves. My method is based on physics theories of ship motion, but with necessary simplifications to ensure real-time performance. My results show that this method is well suited to simulate sophisticated ship motions in real time applications

    The application of three-dimensional mass-spring structures in the real-time simulation of sheet materials for computer generated imagery

    Get PDF
    Despite the resources devoted to computer graphics technology over the last 40 years, there is still a need to increase the realism with which flexible materials are simulated. However, to date reported methods are restricted in their application by their use of two-dimensional structures and implicit integration methods that lend themselves to modelling cloth-like sheets but not stiffer, thicker materials in which bending moments play a significant role. This thesis presents a real-time, computationally efficient environment for simulations of sheet materials. The approach described differs from other techniques principally through its novel use of multilayer sheet structures. In addition to more accurately modelling bending moment effects, it also allows the effects of increased temperature within the environment to be simulated. Limitations of this approach include the increased difficulties of calibrating a realistic and stable simulation compared to implicit based methods. A series of experiments are conducted to establish the effectiveness of the technique, evaluating the suitability of different integration methods, sheet structures, and simulation parameters, before conducting a Human Computer Interaction (HCI) based evaluation to establish the effectiveness with which the technique can produce credible simulations. These results are also compared against a system that utilises an established method for sheet simulation and a hybrid solution that combines the use of 3D (i.e. multilayer) lattice structures with the recognised sheet simulation approach. The results suggest that the use of a three-dimensional structure does provide a level of enhanced realism when simulating stiff laminar materials although the best overall results were achieved through the use of the hybrid model

    Development of Real-Time Virtual Environment with Hierarchical Construction

    Get PDF
    The development of real-time virtual environment is always a fundamental task for research to come out with a good testing procedure. Regardless any software application that has been used to develop the virtual environment, maintaining real-time aspect such as physic simulation, fluid simulation, collision detection, and others is definitely important. Numerous attempts has been introduced in order to develop nearly perfect virtual environment but at the end the solution only cater for some specific settings that must be implemented before we properly visualize the virtual environment. In this paper, we consider few elements that can be used to visualize their virtual environment and perhaps becoming a common visualization procedure to differentiate and compare with others

    An Intestinal Surgery Simulator: Real-Time Collision Processing and Visualization

    Get PDF
    International audienceThis research work is aimed towards the development of a VR-based trainer for colon cancer removal. It enables the surgeons to interactively view and manipulate the concerned virtual organs as during a real surgery. First, we present a method for animating the small intestine and the mesentery (the tissue that connects it to the main vessels) in real-time, thus enabling user-interaction through virtual surgical tools during the simulation. We present a stochastic approach for fast collision detection in highly deformable, self-colliding objects. A simple and efficient response to collisions is also introduced in order to reduce the overall animation complexity. Secondly, we describe a new method based on generalized cylinders for fast rendering of the intestine. An efficient curvature detection method, along with an adaptive sampling algorithm is presented. This approach, while providing improved tessellation without the classical self-intersection problem, also allows for high-performance rendering, thanks to the new 3D skinning feature available in recent GPUs. The rendering algorithm is also designed to ensure a guaranteed frame rate. Finally, we present the quantitative results of the simulations and describe the qualitative feedback obtained from the surgeons
    corecore