324 research outputs found

    Learning Grimaces by Watching TV

    Full text link
    Differently from computer vision systems which require explicit supervision, humans can learn facial expressions by observing people in their environment. In this paper, we look at how similar capabilities could be developed in machine vision. As a starting point, we consider the problem of relating facial expressions to objectively measurable events occurring in videos. In particular, we consider a gameshow in which contestants play to win significant sums of money. We extract events affecting the game and corresponding facial expressions objectively and automatically from the videos, obtaining large quantities of labelled data for our study. We also develop, using benchmarks such as FER and SFEW 2.0, state-of-the-art deep neural networks for facial expression recognition, showing that pre-training on face verification data can be highly beneficial for this task. Then, we extend these models to use facial expressions to predict events in videos and learn nameable expressions from them. The dataset and emotion recognition models are available at http://www.robots.ox.ac.uk/~vgg/data/facevalueComment: British Machine Vision Conference (BMVC) 201

    Emotion Recognition in the Wild using Deep Neural Networks and Bayesian Classifiers

    Full text link
    Group emotion recognition in the wild is a challenging problem, due to the unstructured environments in which everyday life pictures are taken. Some of the obstacles for an effective classification are occlusions, variable lighting conditions, and image quality. In this work we present a solution based on a novel combination of deep neural networks and Bayesian classifiers. The neural network works on a bottom-up approach, analyzing emotions expressed by isolated faces. The Bayesian classifier estimates a global emotion integrating top-down features obtained through a scene descriptor. In order to validate the system we tested the framework on the dataset released for the Emotion Recognition in the Wild Challenge 2017. Our method achieved an accuracy of 64.68% on the test set, significantly outperforming the 53.62% competition baseline.Comment: accepted by the Fifth Emotion Recognition in the Wild (EmotiW) Challenge 201

    EmotiW 2018: Audio-Video, Student Engagement and Group-Level Affect Prediction

    Full text link
    This paper details the sixth Emotion Recognition in the Wild (EmotiW) challenge. EmotiW 2018 is a grand challenge in the ACM International Conference on Multimodal Interaction 2018, Colorado, USA. The challenge aims at providing a common platform to researchers working in the affective computing community to benchmark their algorithms on `in the wild' data. This year EmotiW contains three sub-challenges: a) Audio-video based emotion recognition; b) Student engagement prediction; and c) Group-level emotion recognition. The databases, protocols and baselines are discussed in detail

    Exploring Emotion Features and Fusion Strategies for Audio-Video Emotion Recognition

    Full text link
    The audio-video based emotion recognition aims to classify a given video into basic emotions. In this paper, we describe our approaches in EmotiW 2019, which mainly explores emotion features and feature fusion strategies for audio and visual modality. For emotion features, we explore audio feature with both speech-spectrogram and Log Mel-spectrogram and evaluate several facial features with different CNN models and different emotion pretrained strategies. For fusion strategies, we explore intra-modal and cross-modal fusion methods, such as designing attention mechanisms to highlights important emotion feature, exploring feature concatenation and factorized bilinear pooling (FBP) for cross-modal feature fusion. With careful evaluation, we obtain 65.5% on the AFEW validation set and 62.48% on the test set and rank third in the challenge.Comment: Accepted by ACM ICMI'19 (2019 International Conference on Multimodal Interaction
    • …
    corecore