2 research outputs found

    Dynamic network analytics for recommending scientific collaborators

    Full text link
    Collaboration is one of the most important contributors to scientific advancement and a crucial aspect of an academic’s career. However, the explosion in academic publications has, for some time, been making it more challenging to find suitable research partners. Recommendation approaches to help academics find potential collaborators are not new. However, the existing methods operate on static data, which can render many suggestions less useful or out of date. The approach presented in this paper simulates a dynamic network from static data to gain further insights into the changing research interests, activities and co-authorships of scholars in a field–all insights that can improve the quality of the recommendations produced. Following a detailed explanation of the entire framework, from data collection through to recommendation modelling, we provide a case study on the field of information science to demonstrate the reliability of the proposed method, and the results provide empirical insights to support decision-making in related stakeholders—e.g., scientific funding agencies, research institutions and individual researchers in the field

    Recommendations for item set completion: On the semantics of item co-occurrence with data sparsity, input size, and input modalities

    Get PDF
    We address the problem of recommending relevant items to a user in order to "complete" a partial set of items already known. We consider the two scenarios of citation and subject label recommendation, which resemble different semantics of item co-occurrence: relatedness for co-citations and diversity for subject labels. We assess the influence of the completeness of an already known partial item set on the recommender performance. We also investigate data sparsity through a pruning parameter and the influence of using additional metadata. As recommender models, we focus on different autoencoders, which are particularly suited for reconstructing missing items in a set. We extend autoencoders to exploit a multi-modal input of text and structured data. Our experiments on six real-world datasets show that supplying the partial item set as input is helpful when item co-occurrence resembles relatedness, while metadata are effective when co-occurrence implies diversity. This outcome means that the semantics of item co-occurrence is an important factor. The simple item co-occurrence model is a strong baseline for citation recommendation. However, autoencoders have the advantage to enable exploiting additional metadata besides the partial item set as input and achieve comparable performance. For the subject label recommendation task, the title is the most important attribute. Adding more input modalities sometimes even harms the result. In conclusion, it is crucial to consider the semantics of the item co-occurrence for the choice of an appropriate recommendation model and carefully decide which metadata to exploit
    corecore