215 research outputs found

    Towards Collaborative Simultaneous Localization and Mapping: a Survey of the Current Research Landscape

    Get PDF
    Motivated by the tremendous progress we witnessed in recent years, this paper presents a survey of the scientific literature on the topic of Collaborative Simultaneous Localization and Mapping (C-SLAM), also known as multi-robot SLAM. With fleets of self-driving cars on the horizon and the rise of multi-robot systems in industrial applications, we believe that Collaborative SLAM will soon become a cornerstone of future robotic applications. In this survey, we introduce the basic concepts of C-SLAM and present a thorough literature review. We also outline the major challenges and limitations of C-SLAM in terms of robustness, communication, and resource management. We conclude by exploring the area's current trends and promising research avenues.Comment: 44 pages, 3 figure

    Data-Efficient Decentralized Visual SLAM

    Full text link
    Decentralized visual simultaneous localization and mapping (SLAM) is a powerful tool for multi-robot applications in environments where absolute positioning systems are not available. Being visual, it relies on cameras, cheap, lightweight and versatile sensors, and being decentralized, it does not rely on communication to a central ground station. In this work, we integrate state-of-the-art decentralized SLAM components into a new, complete decentralized visual SLAM system. To allow for data association and co-optimization, existing decentralized visual SLAM systems regularly exchange the full map data between all robots, incurring large data transfers at a complexity that scales quadratically with the robot count. In contrast, our method performs efficient data association in two stages: in the first stage a compact full-image descriptor is deterministically sent to only one robot. In the second stage, which is only executed if the first stage succeeded, the data required for relative pose estimation is sent, again to only one robot. Thus, data association scales linearly with the robot count and uses highly compact place representations. For optimization, a state-of-the-art decentralized pose-graph optimization method is used. It exchanges a minimum amount of data which is linear with trajectory overlap. We characterize the resulting system and identify bottlenecks in its components. The system is evaluated on publicly available data and we provide open access to the code.Comment: 8 pages, submitted to ICRA 201

    Kimera-Multi: Robust, Distributed, Dense Metric-Semantic SLAM for Multi-Robot Systems

    Full text link
    This paper presents Kimera-Multi, the first multi-robot system that (i) is robust and capable of identifying and rejecting incorrect inter and intra-robot loop closures resulting from perceptual aliasing, (ii) is fully distributed and only relies on local (peer-to-peer) communication to achieve distributed localization and mapping, and (iii) builds a globally consistent metric-semantic 3D mesh model of the environment in real-time, where faces of the mesh are annotated with semantic labels. Kimera-Multi is implemented by a team of robots equipped with visual-inertial sensors. Each robot builds a local trajectory estimate and a local mesh using Kimera. When communication is available, robots initiate a distributed place recognition and robust pose graph optimization protocol based on a novel distributed graduated non-convexity algorithm. The proposed protocol allows the robots to improve their local trajectory estimates by leveraging inter-robot loop closures while being robust to outliers. Finally, each robot uses its improved trajectory estimate to correct the local mesh using mesh deformation techniques. We demonstrate Kimera-Multi in photo-realistic simulations, SLAM benchmarking datasets, and challenging outdoor datasets collected using ground robots. Both real and simulated experiments involve long trajectories (e.g., up to 800 meters per robot). The experiments show that Kimera-Multi (i) outperforms the state of the art in terms of robustness and accuracy, (ii) achieves estimation errors comparable to a centralized SLAM system while being fully distributed, (iii) is parsimonious in terms of communication bandwidth, (iv) produces accurate metric-semantic 3D meshes, and (v) is modular and can be also used for standard 3D reconstruction (i.e., without semantic labels) or for trajectory estimation (i.e., without reconstructing a 3D mesh).Comment: Accepted by IEEE Transactions on Robotics (18 pages, 15 figures

    Asynchronous Distributed Smoothing and Mapping via On-Manifold Consensus ADMM

    Full text link
    In this paper we present a fully distributed, asynchronous, and general purpose optimization algorithm for Consensus Simultaneous Localization and Mapping (CSLAM). Multi-robot teams require that agents have timely and accurate solutions to their state as well as the states of the other robots in the team. To optimize this solution we develop a CSLAM back-end based on Consensus ADMM called MESA (Manifold, Edge-based, Separable ADMM). MESA is fully distributed to tolerate failures of individual robots, asynchronous to tolerate practical network conditions, and general purpose to handle any CSLAM problem formulation. We demonstrate that MESA exhibits superior convergence rates and accuracy compare to existing state-of-the art CSLAM back-end optimizers

    Relative Transformation Estimation Based on Fusion of Odometry and UWB Ranging Data

    Full text link
    In this work, the problem of 4 degree-of-freedom (3D position and heading) robot-to-robot relative frame transformation estimation using onboard odometry and inter-robot distance measurements is studied. Firstly, we present a theoretical analysis of the problem, namely the derivation and interpretation of the Cramer-Rao Lower Bound (CRLB), the Fisher Information Matrix (FIM) and its determinant. Secondly, we propose optimization-based methods to solve the problem, including a quadratically constrained quadratic programming (QCQP) and the corresponding semidefinite programming (SDP) relaxation. Moreover, we address practical issues that are ignored in previous works, such as accounting for spatial-temporal offsets between the ultra-wideband (UWB) and odometry sensors, rejecting UWB outliers and checking for singular configurations before commencing operation. Lastly, extensive simulations and real-life experiments with aerial robots show that the proposed QCQP and SDP methods outperform state-of-the-art methods, especially in geometrically poor or large measurement noise conditions. In general, the QCQP method provides the best results at the expense of computational time, while the SDP method runs much faster and is sufficiently accurate in most cases

    Distributed Simultaneous Localisation and Auto-Calibration using Gaussian Belief Propagation

    Full text link
    We present a novel scalable, fully distributed, and online method for simultaneous localisation and extrinsic calibration for multi-robot setups. Individual a priori unknown robot poses are probabilistically inferred as robots sense each other while simultaneously calibrating their sensors and markers extrinsic using Gaussian Belief Propagation. In the presented experiments, we show how our method not only yields accurate robot localisation and auto-calibration but also is able to perform under challenging circumstances such as highly noisy measurements, significant communication failures or limited communication range.Comment: Published in IEEE Robotics and Automation Letters (RA-L) 202

    Collaborative Perception From Data Association To Localization

    Get PDF
    During the last decade, visual sensors have become ubiquitous. One or more cameras can be found in devices ranging from smartphones to unmanned aerial vehicles and autonomous cars. During the same time, we have witnessed the emergence of large scale networks ranging from sensor networks to robotic swarms. Assume multiple visual sensors perceive the same scene from different viewpoints. In order to achieve consistent perception, the problem of correspondences between ob- served features must be first solved. Then, it is often necessary to perform distributed localization, i.e. to estimate the pose of each agent with respect to a global reference frame. Having everything set in the same coordinate system and everything having the same meaning for all agents, operation of the agents and interpretation of the jointly observed scene become possible. The questions we address in this thesis are the following: first, can a group of visual sensors agree on what they see, in a decentralized fashion? This is the problem of collaborative data association. Then, based on what they see, can the visual sensors agree on where they are, in a decentralized fashion as well? This is the problem of cooperative localization. The contributions of this work are five-fold. We are the first to address the problem of consistent multiway matching in a decentralized setting. Secondly, we propose an efficient decentralized dynamical systems approach for computing any number of smallest eigenvalues and the associated eigenvectors of a weighted graph with global convergence guarantees with direct applications in group synchronization problems, e.g. permutations or rotations synchronization. Thirdly, we propose a state-of-the art framework for decentralized collaborative localization for mobile agents under the presence of unknown cross-correlations by solving a minimax optimization prob- lem to account for the missing information. Fourthly, we are the first to present an approach to the 3-D rotation localization of a camera sensor network from relative bearing measurements. Lastly, we focus on the case of a group of three visual sensors. We propose a novel Riemannian geometric representation of the trifocal tensor which relates projections of points and lines in three overlapping views. The aforemen- tioned representation enables the use of the state-of-the-art optimization methods on Riemannian manifolds and the use of robust averaging techniques for estimating the trifocal tensor

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved
    • …
    corecore