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Collaborative Perception From Data Association To Localization

Abstract
During the last decade, visual sensors have become ubiquitous. One or more cameras

can be found in devices ranging from smartphones to unmanned aerial vehicles and

autonomous cars. During the same time, we have witnessed the emergence of large

scale networks ranging from sensor networks to robotic swarms.

Assume multiple visual sensors perceive the same scene from different viewpoints. In

order to achieve consistent perception, the problem of correspondences between ob-

served features must be first solved. Then, it is often necessary to perform distributed

localization, i.e. to estimate the pose of each agent with respect to a global reference

frame. Having everything set in the same coordinate system and everything having

the same meaning for all agents, operation of the agents and interpretation of the

jointly observed scene become possible.

The questions we address in this thesis are the following: first, can a group of visual

sensors agree on what they see, in a decentralized fashion? This is the problem of

collaborative data association. Then, based on what they see, can the visual sensors

agree on where they are, in a decentralized fashion as well? This is the problem of

cooperative localization.

The contributions of this work are five-fold. We are the first to address the problem

of consistent multiway matching in a decentralized setting. Secondly, we propose

an efficient decentralized dynamical systems approach for computing any number of

smallest eigenvalues and the associated eigenvectors of a weighted graph with global

convergence guarantees with direct applications in group synchronization problems,

e.g. permutations or rotations synchronization. Thirdly, we propose a state-of-the

art framework for decentralized collaborative localization for mobile agents under

the presence of unknown cross-correlations by solving a minimax optimization prob-

lem to account for the missing information. Fourthly, we are the first to present an

approach to the 3-D rotation localization of a camera sensor network from relative
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bearing measurements. Lastly, we focus on the case of a group of three visual sensors.

We propose a novel Riemannian geometric representation of the trifocal tensor which

relates projections of points and lines in three overlapping views. The aforemen-

tioned representation enables the use of the state-of-the-art optimization methods on

Riemannian manifolds and the use of robust averaging techniques for estimating the

trifocal tensor.
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Abstract

During the last decade, visual sensors have become ubiquitous. One or more cameras can

be found in devices ranging from smartphones to unmanned aerial vehicles and autonomous

cars. During the same time, we have witnessed the emergence of large scale networks ranging

from sensor networks to robotic swarms.

Assume multiple visual sensors perceive the same scene from different viewpoints. In order

to achieve consistent perception, the problem of correspondences between observed features

must be first solved. Then, it is often necessary to perform distributed localization, i.e. to

estimate the pose of each agent with respect to a global reference frame. Having everything

set in the same coordinate system and everything having the same meaning for all agents,

operation of the agents and interpretation of the jointly observed scene become possible.

The questions we address in this thesis are the following: first, can a group of visual sensors

agree on what they see, in a decentralized fashion? This is the problem of collaborative data

association. Then, based on what they see, can the visual sensors agree on where they are,

in a decentralized fashion as well? This is the problem of cooperative localization.

The contributions of this work are five-fold. We are the first to address the problem of

consistent multiway matching in a decentralized setting. Secondly, we propose an efficient

decentralized dynamical systems approach for computing any number of smallest eigenval-

ues and the associated eigenvectors of a weighted graph with global convergence guarantees
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with direct applications in group synchronization problems, e.g. permutations or rotations

synchronization. Thirdly, we propose a state-of-the art framework for decentralized collab-

orative localization for mobile agents under the presence of unknown cross-correlations by

solving a minimax optimization problem to account for the missing information. Fourthly,

we are the first to present an approach to the 3-D rotation localization of a camera sensor

network from relative bearing measurements. Lastly, we focus on the case of a group of

three visual sensors. We propose a novel Riemannian geometric representation of the tri-

focal tensor which relates projections of points and lines in three overlapping views. The

aforementioned representation enables the use of the state-of-the-art optimization methods

on Riemannian manifolds and the use of robust averaging techniques for estimating the

trifocal tensor.
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Chapter 1

Introduction

1.1 Collaborative data association

Estimating correspondences between feature points, regions or objects observed in different

images has been a long standing problem in computer vision and robotics with various

applications such as structure from motion, image registration, shape analysis and object

matching. Most of the efforts in previous works have been dedicated to improving the quality

of the correspondences by designing new feature detectors, descriptors, and outlier rejection

algorithms in a pairwise setting. However, the problem setting in practice is often multiway

if more than one view of a scene or an object is available.

Multiway matching refers to the problem of establishing correspondences among a collection

of images from noisy pairwise correspondences. It is a more recent problem compared to two-

way matching and it has received increasing amount of attention during the last few years.

Multiway matching has been successfully applied to computing consistent pointwise maps

among a collection of shapes [93, 64, 54, 53] and to estimating consistent associations among

a collection of images between either traditional feature descriptors [101, 23, 156, 148, 147]

such as SIFT [81] and shape context features [10] or semantic descriptors [156, 140].

1



Figure 1.1: The first problem considered in this work: multiway matching with cycle consis-
tency. Cycle consistency is satisfied on the left example and violated on the right example.

A necessary condition for good matching of multiple views is the cycle consistency, meaning

that the composition of correspondences along a cycle of views should be equal to the identity.

In practice, cycle consistency is not satisfied if pairs of views are matched separately, which

is usually the case, due to the presence of outliers. Nguyen et al.[93] and Zach et al.[150]

were the first to propose the use the cycle consistency to identify the correctness of pairwise

correspondences.

Later, it was proposed [64, 54, 101] that finding cyclically consistent correspondences from

noisy pairwise correspondences can be formulated as quadratic integer programming which

in turn, can be relaxed into a generalized Rayleigh quotient problem whose solution is easily

obtainable by the leading eigenvectors of the matrix of pairwise correspondences. Although

spectral relaxations are easily implementable and come with some theoretical guarantees,

in practice, they lack robustness since the total number of features has to be accurately

known. This shortcoming was remedied by semidefinite programming relaxations proposed

by Huang and Guibas [53] and Chen et al.[23]. These works provide theoretical guarantees

under certain assumptions on outliers generation but do not scale well. Zhou et al.[156]

improved the scalability of the semidefinite programming relaxations by reformulating them

as rank minimization and developed a more efficient algorithm by dropping the positive-

definite constraint on the matrix of pairwise correspondences. More recently, Tron et al.[140]

proposed a generalization of the Quick Shift algorithm [142] for multiway matching. Maset et

2



al.[85] suggested a practical modification to the spectral relation which improves performance

but consistency is no longer satisfied.

All of the aforementioned works address problem in a centralized setting, i.e. all pairwise

measurements are available and optimized jointly. To the best of our knowledge, only

our work and the concurrent work of [52] address the problem of multiway matching in a

decentralized setting. This is the first main contribution of this work.

Computing the eigenvectors associated with a number of extreme eigenvalues of the adja-

cency matrix of a graph, is crucial in the spectral relaxation solutions of group synchroniza-

tion problems such as permutations synchronization [101, 75] and rotations synchronization

[7, 137]. This motivates us to consider the decentralized estimation of a number of extreme

(either smallest or largest) eigenvalues and associated eigenvectors of a, possibly weighted,

graph.

Apart from group synchronization problems, the eigenvalues and eigenvectors of matri-

ces representing graphs are crucial in the analysis of a wide variety of networked systems

problems. For example, the eigenvalue spectra of a graph are of relevance in connectivity

maintenance [29, 152, 151, 149, 114], event-triggered consensus problems [4], decentralized

network design [109], and distributed optimization for fast averaging [16, 100].

Common methods to compute the eigenvectors of a symmetric matrix in a centralized setting

are (i) the Power Method, for one-dimensional invariant subspace computation, as well as

(ii) the Orthogonal Iteration Method, for computing higher-dimensional invariant subspaces

[43]. The Orthogonal Iteration method consists of a power step and an orthonormalization

step based on the QR-decomposition. In many applications, the matrix representing the

graph structure is not known by a centralized agent; in contrast, the agents in the network

have access to the rows and/or columns of the matrix representing their local graph neigh-

borhood. In this decentralized setting, the power step of the orthogonal iteration can be

implemented using local information solely. However, the orthonormalization step in the QR

3



decomposition requires that all the nodes have access to the upper triangular factor of the QR

decomposition. Kempe and McSherry [60] were the first to propose a decentralized variant

of the Orthogonal Iteration, namely the Decentralized Orthogonal Iteration. Despite being

one of the most widely used methods for decentralized eigenvector estimation, the Decen-

tralized Orthogonal Iteration presents a major drawback. At each iteration, Decentralized

Orthogonal Iteration requires a very accurate estimation of an aggregate quantity, namely

the upper triangular factor of the QR decomposition of the matrix under consideration.

Apart from general decentralized algorithms to compute the eigendecomposition of a matrix,

we also find in the literature specialized methods for estimating the algebraic connectivity

(i.e. the smallest nontrivial eigenvalue) of the Laplacian matrix of a graph [89], [78], [5].

Furthermore, we also find a method for estimating all the eigenvalues of the Laplacian [37]

by building a networked dynamical system whose vibrating frequencies correspond to the

eigenvalues of the Laplacian matrix of the network. However, all of these methods are

specific for the Laplacian of a graph, whereas the methods of the work herein presented

are applicable to any symmetric matrix whose sparsity pattern matches that of a given

communication graph.

1.2 Cooperative localization

The next problem we consider is decentralized cooperative state estimation of mobile agents.

State estimation is one of the fundamental problems in control theory and robotics. The most

common state estimators are undoubtedly the Kalman filter [59], which is optimal for the

case of linear systems, and its generalizations for nonlinear systems: the Extended Kalman

Filter (EKF) [120] and the Uscented Kalman Filter (UKF) [57]. In multi-agent systems, the

task of state estimation takes a collaborative form in the sense that it involves inter-agent

measurements and constraints. The paradigm we consider in this work, is decentralized

cooperative localization of mobile agents [36, 113] using relative position measurements.
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One of the main challenges of decentralized cooperative localization of mobile agents is

that the group state estimates become highly correlated as information flows through the

network. Ignoring these correlations has grave consequences: estimates become optimistic

and result in divergence of the estimator.

The most widely used algorithm for information fusion under the presence of unknown

cross-correlations is the Covariance Intersection (CI), introduced by Julier and Uhlmann

[58]. In its simplest form, the Covariance Intersection algorithm is designed to fuse two

random vectors whose correlation is not known by forming a convex combination of the

two estimates in the information space. Covariance Intersection produces estimates that are

provably consistent, in the sense that estimated error covariance is an upper bound of the true

error covariance and can be generalized to fuse partially observable estimates. Optimality of

Covariance Intersection was discussed in [22, 110]. Despite the aforementioned advantages,

it has been observed [6, 146, 90, 63] that Covariance Intersection produces estimates that

are too conservative, which may decrease the accuracy and convergence speed of the overall

estimator. To alleviate the conservativeness of Covariance Intersection several other methods

have been recently proposed such as the Inverse Covariance Intersection [95, 94], which

is less conservative than Covariance Intersection but consistency is no longer guaranteed

in general, and the Ellipsoidal Intersection [118, 117] which computes the largest volume

ellipsoid within the intersection of the two given confidence ellipsoids. However, neither of

the two aforementioned methods generalize for partially observable estimates. A minimax

approach for fusing two, possibly partially observable estimates, of a random variable was

proposed in [39], concurrently with the method presented in this work.

Approaches to decentralized cooperative localization can roughly be divided into two cat-

egories. Adopting the terminology of [63], the first category includes tightly coupled ap-

proaches [91, 113, 129, 77, 103, 63] in the sense that each agent broadcasts its information

to the entire team. However, these approaches result in higher computational, memory and

communication costs compared to the loosely coupled approaches.

5



The second category of works for decentralized cooperative localization includes loosely cou-

pled approaches in the sense that only one or both agents involved with a relative measure-

ment update their estimates. As mentioned before, the main difficulty of these approaches

arises from the fact that estimates become highly correlated as information flows through

the network. Several of these approaches [21, 6] use Covariance Intersection for localization

using relative pose measurements and decentralized state estimation respectively. Other

approaches [79, 144] use the Split Covariance Intersection method, a variation of Covariance

Intersection which exploits partial independence assumptions, for intelligent transportation

vehicle localization. Other approaches that fall in this category include [9], in which con-

sistency is enforced in a decentralized manner by maintaining an exponential number of

estimates to keep track of the dependencies, and [27] which proposes an approach very

similar to CI.

The approach adopted in this work is a loosely coupled approach within an EKF framework.

The open problem we address in this work, is how to update the state estimates upon

taking relative measurements while on the one hand, being less conservative than Covariance

Intersection, and on the other hand, taking the (unknown) correlations into account.

Next, we address the rotation localization problem of a sensor network in a minimal setup,

where we assume that pairs of agents can measure a sparse subset of their relative bearings

(without relative distance or rotation measurements), possibly in addition to the bearings

with respect to a few external common points in the environment (for instance, the agents,

in addition to detecting each other in the images they acquire, they might also detect a

common object). We do not assume any common shared knowledge among the agents (e.g.,

a magnetic north or gravity direction), although we assume that agents that can measure

each other can also communicate. Finally, we focus only on the 3-D rotation localization

problem, since the 2-D version has been already solved, and translations can be retrieved

relatively easily once rotations are known (specific references for these facts are reviewed

below).
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The problem of localizing a set of nodes using bearing-only information has received sig-

nificant attention in the last decade. Note that the localization problem, in its simplest

forms (e.g., if only first order dynamics is considered), is equivalent to the formation control

problem [134], so in this section we consider both lines of work.

The simplest version of the problem considers only translations, by assuming that all the

nodes have a common rotational reference frame. Since the constraints involved are linear,

typical solutions can be mostly formulated and analyzed using graph theory and linear al-

gebra; as a result, it is now well understood that the localizability of the problem can be

captured through the notion of rigidity or combinatorial conditions on the graph topology

(e.g., see [155, 132, 35] and references therein). Another, more challenging version of the

localization problem considers the recovery of the relative rotations between the agents. In

this case, the majority of existing works assume that, in addition to relative bearings, the

agents measure full relative rotations. We note that, with this assumption, the localization

problem can be transformed into a consensus problem on the position of a common refer-

ence frame [135], so that solutions to the latter can be used for the former. Even with these

considerations, however, the topological obstructions introduced by the space of rotations

make the development of almost globally convergent algorithms nontrivial. For instance,

some existing solutions ensure only local convergence [127, 97]; to obtain almost global solu-

tions it is necessary to resort to reshaping functions [130], or to consider extrinsic solutions,

where the states of the nodes are not forced to be rotations, based on relaxations to singular

vectors [71], the convex hull of the space of rotations [86], or QR decompositions [126]. A

few papers consider the rotation localization problem in succession or conjunction with the

translation counterpart [31, 135, 65]. As already stated, however, all these works assume

that the full relative rotations are available. This information can be easily extracted in

the 2-D case [106], and in the 2.5-D case where the nodes can measure a common direc-

tion (e.g., gravity,[134, 116]), as long as the graph contains at least an undirected spanning

tree. The case of 3-D bearing-only (without relative rotations) rotation localization has been

considered in [106]; in that paper, however, only small graphs (three or four nodes) were
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considered, without providing any concrete algorithm. If we assume the availability of at

least five external reference points between pairs of agents, then [135] also implicitly pro-

vides a solution to the 3-D bearing-only rotation localization problem by recovering relative

rotations through epipolar geometry [82].

The last topic we consider in this work is the localization of a group of three visual sensors.

Localizing such a sensor network is equivalent to estimating the trifocal tensor. The trifocal

tensor relates projection of points and lines in three overlapping views of a rigid scene in

the world. The trifocal tensor was first introduced in the context of calibrated geometry to

describe relations between projections of lines by Spetsakis and Aloimonos [122] and Weng

et al.[145]. Later, Hartley [49, 48] generalized the trifocal tensor for the uncalibrated case

and Shashua [115] investigated trilinear relations of matched points in three perspective

views.

There has been numerous works on minimal parametrizations of the projective trifocal ten-

sor [128, 111, 102, 96, 20, 107]. In most formulations, one of the three cameras local reference

frame is chosen as the global reference frame. A symmetric formulation (where every cam-

era has a similar role) was recently proposed by Ponce and Hebert [107] who minimally

parametrized the trifocal tensor by providing necessary and sufficient conditions for three

visual rays to converge in terms of three epipolar and one or two trifocal constraints. Sym-

metric trilinear constraints were also introduced in [108].

Symmetric representations for the two view counterpart of the trifocal tensor, the essential

matrix, have been introduced in [40, 50, 124] and are based on the singular value decompo-

sition (SVD) of essential matrices. Geometric insights and further properties of symmetric

representations for the space of essential matrices endowed with a Riemannian manifold

structure were recently presented by Tron and Daniilidis [137]. However, the study of the

space of essential matrices as a Riemannian manifold can be traced back to Soatto et al.[119]

who formulated structure from motion as a filtering problem on the essential manifold. Later,

Ma et al.[83] proposed a Riemannian Newton algorithm on the essential manifold for the
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problem of structure and motion estimation which was later generalized by Vidal et al.[143]

for multiple views. To the best of our knowledge, analogous representations and manifold

structures for the space of calibrated trifocal tensors have not been investigated before.

In this work, we propose a parametrization of the trifocal tensor for calibrated cameras with

non-colinear pinholes based on a quotient Riemannian manifold. This parametrization is

almost symmetric (we use a preferred camera only for the translations), and is derived from

a particular choice of the global reference frame.

1.3 Contributions

In the first main contribution of this work, we propose a distributed optimization method for

solving the permutation synchronization problem, which is a specific instance of multiway

matching. Then, we generalize our approach for the general case of multiway matching.

The proposed optimization methods are based on distributed projected gradient descent

with constant step size. We rigorously analyze the convergence properties of the proposed

algorithms. We provide experimental evidence supporting that the proposed approaches,

albeit decentralized, have performance comparable with the state of the art centralized

approaches.

In the second main contribution, we propose a dynamical systems approach for the problem

of distributedly estimating any number of smallest eigenvalues and the associated eigen-

vectors of a weighted graph. The proposed approach is fully decentralized and has global

convergence guarantees. In contrast to approaches based on the Orthogonal Iteration, the

orthogonality constraints that must be satisfied among the eigenvectors of a symmetric ma-

trix are asymptotically satisfied by the dynamical system herein proposed. Thus, the main

computational burden of the Decentralized Orthogonal Iteration, namely, the orthonormal-

ization step, is not present in our approach. We demonstrate the validity of our approach

through rigorous theoretical analysis and experimental evaluation.
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In the third main contribution, we, first, address the problem of fusing two random vec-

tors with unknown cross-correlations by formulating as a minimax optimization problem.

Then, we extend our minimax formulation to linear measurement models and propose a

numerical method for computing the optimal estimate. As a direct application, we consider

the problem of decentralized cooperative localization for a group of mobile agents. The

proposed estimator takes cross-correlations into account while being less conservative than

the widely used Covariance Intersection. We demonstrate the superiority of the proposed

method compared to Covariance Intersection with numerical examples and simulations.

The fourth contribution of this work consists of providing the first, to the best of our knowl-

edge, solution to the problem of distributed rotation localization of a network from relative

bearing measurements. We provide a distributed algorithm, based on distributed Rieman-

nian gradient descent, that can work on any localizable network and we prove stronger

localizability results than those provided in [106].

In the last main contribution, we propose a novel parametrization of the trifocal tensor

obtained from a quotient Riemannian manifold. We show how it can be used for refining

estimates of the tensor from image data through state of the art techniques for optimiza-

tion on manifolds [1]. In addition, the Riemannian structure provides a notion of distance

between trifocal tensors. We show that this distance can be computed efficiently, and that

it produces meaningful results in a sample Structure-from-Motion problem.

1.4 Organization of this work

The remainder of this work is organized as follows. Some background material is first re-

viewed in Chapter 2. Chapter 3 contains the proposed distributed optimization algorithm

for solving permutation synchronization. The proposed distributed optimization approach

for the general case of multiway matching is the objective of Chapter 4. The proposed dy-

namical systems approach to distributedly computing the eigenvalues and associated eigen-
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vectors of a weighted graph is presented in Chapter 5. Chapter 6 includes our approach

to decentralized state estimation. In Chapter 7 we present our approach to distributed

rotation localization from bearing measurements. Chapter 8 includes a novel Riemannian

manifold representation of the trifocal tensor. Conclusions and potential future directions

are presented in Chapter 9.
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Chapter 2

Background

2.1 Graph theory

In this section, we review some elementary facts from graph theory. For an in depth analysis,

we refer the reader to [42, 87]. An undirected graph or simply a graph is denoted by the pair

G = (V, E), where V = {1, 2, . . . , n} is the set of vertices and E ⊆ [V]2 is the set of edges,

where [V]2 denotes the set of unordered pairs of elements of V. The neighborhood Ni of the

vertex i is the subset of V defined by

Ni = {j ∈ V | {i, j} ∈ E}. (2.1)

A path is a sequence i0, i1, . . . , im of distinct vertices such that {ik−1, ik} ∈ E for all k =

1, . . . ,m. A cycle of length n is a sequence i0, i1, . . . , in−1, in of vertices such that {ik−1, ik} ∈

E for all k = 1, . . . , n, in = i0 and i0, i1, . . . , in−1 are distinct. A graph is connected if there is

a path between any two vertices. Given a graph G = (V, E), its adjacency matrix is defined
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by

(A(G))ij =

 1, if {i, j} ∈ E ,

0, otherwise.
(2.2)

The degree matrix ∆(G) is the diagonal matrix such that

(∆(G))ii = |Ni| =
∑
j∈Ni

(A(G))ij , (2.3)

where |·| denotes the cardinality of a set.

A directed graph or digraph is denoted by the pair G = (V, E), where E ⊆ V ×V. A weighted

digraph G = (V, E , w) is a graph along with a function w : E → R+. The adjacency matrix

of a weighted digraph is defined by

(A(G))ij =

 w(j, i), if (j, i) ∈ E

0, otherwise
(2.4)

Intuitively, if (A(G))ij > 0 there is information flow from vertex j to vertex i. The neigh-

borhood Ni of the vertex i is the subset of V defined by

Ni = {j ∈ V | (j, i) ∈ E}. (2.5)

The degree matrix ∆(G) is the diagonal matrix that contains the in-degrees on its diagonal,

that is

(∆(G))ii = din(i) =
∑
j∈Ni

(A(G))ij . (2.6)

The maximum degree of a graph G is defined by

dmax(G) = max
i∈V
{din(i)}. (2.7)

A directed path is a sequence i0, i1, . . . , im of distinct vertices such that (ik−1, ik) ∈ E for
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all k = 1, . . . ,m. A digraph is strongly connected if there is a directed path between any

two vertices. A digraph is balanced if the in-degree din(i) and the out-degree dout(i) =∑
(i,j)∈E(A(G))ji are equal for all i ∈ V. A digraph is a rooted out-branching tree if it has a

vertex to which all other vertices are path connected and does not contain any cycles.

The graph Laplacian L(G) is defined as

L(G) = ∆(G)−A(G). (2.8)

By construction, L(G)1 = 0. A digraph on n vertices contains a rooted-out branching if

and only the rank of its Laplacian is n − 1. Moreover, L(G) is positive semidefinite if the

graph is undirected. Using Gershgorin discs theorem [51], it can be easily verified that the

eigenvalues of the adjacency matrix lie in the interval [−dmax, dmax] and the eigenvalues of

the Laplacian lie in the interval [0, 2dmax]. The graph G is connected if and only if

λ2(L(G)) > 0, (2.9)

where λ1(A) ≤ λ2(A) ≤ . . . ≤ λn(A) denote the eigenvalues of a matrix A ∈ Rn×n in

ascending order. We also use λmin(A) and λmax(A) to denote the smallest and the largest

eigenvalues, respectively, of a matrix A ∈ Rn×n. A lower bound on the second eigenvalue of

the graph Laplacian [28],[88] is given by

λ2(L(G)) ≥ 4

n diam(G)
. (2.10)

where diam(G) denotes the diameter of the graph G, defined as the maximum length of the

shortest path connecting two vertices in G.

A matrix closely related to the graph Laplacian is the Perron matrix Pε defined by

Pε(G) = I − εL(G), (2.11)
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with 0 < ε < 1/dmax(G).

Given a graph G = (V, E), with |V| = n, a symmetric matrix A ∈ Rn×n is said to be

distributed across G if j /∈ Ni ∪{i} implies (A)ij = 0 for all i, j ∈ {1, 2, . . . , n}. A symmetric

block matrix A ∈ Rm×m with blocks [A]ij ∈ Rmi×mj is said to be distributed across G if

j /∈ Ni∪{i} implies [A]ij = 0mi×mj for all i, j ∈ {1, 2, . . . , n}. Common examples of matrices

distributed across network include the graph Laplacian, the adjacency matrix of a graph and

the Perron matrix.

2.2 Stochastic matrices and permutations

In this section, we introduce some notions and notations regarding stochastic matrices and

permutations that will be heavily used throughout this work. Stochastic matrices and their

properties have been well studied in the area of distributed dynamical systems [56, 98, 13]

and in probability theory in the context of Markov chains [8, 13]. A nonnegative matrix is

stochastic if all its row sums are equal to 1. The spectral radius ρ(A) of a stochastic matrix

A is equal to 1 and it is an eigenvalue of A. A nonnegative matrix is doubly stochastic if

both its row sums and column sums are equal to 1. We denote by Dn the set of n×n doubly

stochastic matrices, i.e.

Dn = {X ∈ Rn×n : X ≥ 0, X1 = 1, XT1 = 1}. (2.12)

The set of m×n partial doubly stochastic matrices, denoted by Dm,n, is the set of all m×n

stochastic matrices with column sums at most 1, i.e.

Dm,n = {X ∈ Rm×n : X ≥ 0, X1 = 1, XT1 ≤ 1}, (2.13)
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with m ≤ n. A doubly stochastic matrix is a permutation matrix if its elements are either

0 or 1. The set of n× n permutation matrices is denoted by Pn and defined by

Pn = {X ∈ {0, 1}n×n : X1 = 1, XT1 = 1}. (2.14)

The set of n× n permutation matrices is a group under matrix multiplication. The inverse

of a permutation matrix is given by its transpose. An m×n stochastic matrix, with m ≤ n,

is a partial permutation matrix if its elements are either 0 or 1. The set of m × n partial

permutation matrices is denoted by Pm,n, i.e.

Pm,n = {X ∈ {0, 1}m×n : X1 = 1, XT1 ≤ 1}. (2.15)

Let [n]
.
= {1, 2, . . . , n} for some positive integer n. A mapping π : [n]→ [n] is a permutation

of [n] if it is bijective. The set of all permutations of [n] forms a group under composi-

tion, termed the symmetric group Sn. A permutation π ∈ Sn is represented by an n × n

permutation matrix Π ∈ Pn such that

(Π)ij =

 1, if π(j) = i,

0, otherwise,
(2.16)

or equivalently,

Πej = eπ(j), (2.17)

where ei is the ith canonical basis vector. The simplest choice for a distance on Sn is given

by

d(π1, π2)
.
= n− tr(ΠT

1 Π2) =
1

2
‖Π1 −Π2‖2F , (2.18)

where Π1,Π2 are the matrix representations of permutations π1 and π2 respectively. The

distance function defined above is simply the number of labels assigned differently by per-

mutations π1 and π2. Observe that the distance as defined in (2.18), is invariant to left and
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right translations, that is

d(π1, π2) = d(π0 ◦ π1, π0 ◦ π2) = d(π1 ◦ π0, π2 ◦ π0). (2.19)

for all π0 ∈ Sn. Finally, a mapping π : [m] → [n], m ≤ n, is a partial permutation if it is

injective. A partial permutation is represented by an m× n partial permutation matrix.

2.3 Consensus algorithms

Reaching agreement or consensus is one of the fundamental and most well studied problems

in multi-agent systems. Consensus algorithms, that is algorithms for reaching agreement

usually in a decentralized fashion, have been extensively studied in the control community

[13, 56, 98]. In its simplest form, a consensus algorithm is a decentralized protocol in which

a group of agents, modeled as vertices of a graph, try to reach agreement by communicating

only with a small subset of the group. This small subset is usually defined as the set of

closest agents in a Euclidean distance sense.

Formally, let G = (V, E) denote the underlying communication graph. Let xi(t) ∈ R denote

the state of agent i at time time t. Then, the simplest discrete time consensus protocol is

given by

xi(t+ 1) =
∑

j∈Ni∪{i}

wijxj(t), (2.20)

where wij ≥ 0 and
∑

j wij = 1. Different choices for the coefficients {wij}ni,j=1 result in

different protocols. The choice wii = 1 − ε(∆(G))ii and wij = −ε(A(G))ij for i 6= j results

in the following protocol

x(t+ 1) = Pε(G)x(t), (2.21)

where x = [x1 · · · xn]T and 0 < ε < 1/dmax(G).

The convergence properties of the consensus protocol (2.21) depend on the connectivity of
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the communication graph G. Specifically, if G is undirected and connected then,

lim
k→∞

Pε(G)k =
1

n
1n1

T
n , (2.22)

where n is the number of agents and Pε(G)k denotes the kth power of matrix Pε(G). Thus,

lim
t→∞

x(t) = (1Tnx(0)/n)1n, (2.23)

that is the states of all agents asymptotically converge to the the average of the initial states.

In the case of a directed communication graph G, we have that a necessary condition for

protocol (2.21) to converge to agreement is the existence of a rooted out-branching as a

subgraph. Specifically, if G contains a rooted out-branching as a subgraph, then for any

initial condition x(0)

lim
t→∞

x(t) = (qT1 x(0)/
√
n)1n, (2.24)

where q1 is the right eigenvector of the Laplacian associated with its eigenvalue 1.

2.4 Distributed optimization

In this section, we include some basic convergence results regarding projected gradient de-

scent with constant step size for minimizing an objective defined on an undirected graph.

We denote by 〈·, ·〉 the standard Euclidean inner product, by gradφ(x) the gradient of the

real-valued function φ and by Hessφ(x)[u] the Hessian of the real-valued function φ at x

evaluated at the direction u.

First, we include the following classic result [12] regarding the maximum allowed step size

for projected gradient descent.

Lemma 2.4.1 (Projected gradient descent [12]). Assume we are given the problem of op-

timizing real-valued objective φ over some convex compact set C ⊂ Rn, where φ is twice

18



continuously differentiable with

〈v,Hessφ(x)[v]〉 ≤ µmax〈v, v〉, (2.25)

for some positive constant µmax. Then, every limit point of the sequence {xk} generated by

projected gradient descent with constant step size ε > 0, i.e.

xk+1 = ProjC
(
xk − ε gradφ(xk)

)
, (2.26)

is a stationary point x? (that is 〈gradφ(x?), (x−x?)〉 ≥ 0 for all x ∈ C) for all 0 < ε < 2/µmax

.

Next, we consider the problem of constrained minimization of an objective defined on a

graph with projected gradient descent with constant step size. Specifically, let G = (V, E)

be an undirected graph and φ a real-valued function defined on G by

φ({xi}i∈V) = α
∑
i∈V

φi(xi) + β
∑
{i,j}∈E

φij(xi, xj) (2.27)

where each vertex i maintains a vector xi ∈ Rni , α, β are nonnegative scalars, φi : Rni → R

and φij : Rni × Rnj → R are twice continuously differentiable real-valued functions. We

consider constrained optimization problems of the following form

minimize
{xi}i∈V

φ({xi}i∈V)

subject to xi ∈ Ci, i = 1, 2, . . . ,m,

(2.28)

where each Ci ⊂ Rni is a convex compact set. The projected gradient descent method with

constant step size ε consists of updates of the form

wki = − gradxi φ({xki }i∈V),

xk+1
i = ProjCi

(
xki + εwki

)
, i = 1, 2, . . . ,m.

(2.29)
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Bounds on the step size ε that guarantee convergence to a stationary point are presented in

the proposition that follows.

Proposition 2.4.2. Assume that

〈vi,Hessφi(xi)[vi]〉 ≤ µmax〈vi, vi〉, (2.30)

〈(vi, vj),Hessφij(xi, xj)[vi, vj ]〉 ≤ νmax〈(vi, vj), (vi, vj)〉, (2.31)

for some positive constants µmax, νmax. Then, every limit point generated by the projected

gradient descent method with constant step size ε satisfying

0 < ε < 2/ (αµmax + βνmaxdmax(G)) , (2.32)

is a stationary point.

The proof of the above proposition is presented in Appendix B.1 and is based on a similar

proof of [136]. Note that the projected gradient descent rule (2.29) is by construction

decentralized since the gradient of the objective φ with respect to xi, denoted by gradxi φ,

can be estimated using only information from the neighborhood of i.

2.5 Alternating direction method of multipliers

The Alternating direction method of multipliers (ADMM) [17] is a widely used optimization

method especially suitable for large scale problems. With ADMM, one can solve optimiza-

tion problems with separable objective and linear equality constraints, that is, optimization

problems of the following so-called standard form:

minimize
x,z

f(x) + g(z)

subject to Ax+Bz = c,

(2.33)
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where f, g are real-valued functions. For problem (2.33), the augmented Lagrangian is given

by

Lρ(x, z, y) = f(x) + g(z) + yT (Ax+Bz − c) + (ρ/2)‖Ax+Bz − c‖22, (2.34)

where ρ > 0 is the penalty parameter. Then, the ADMM iterations are as follows

xk+1 := argmin
x

Lρ(x, z
k, yk), (2.35)

zk+1 := argmin
z

Lρ(x
k, z, yk), (2.36)

yk+1 := yk + ρ(xk+1 − zk+1). (2.37)

Intuitively, the ADMM algorithm is an approximate method of multipliers. Instead of

minimizing the Lagrangian jointly over x and z to compute the gradient of the dual function,

the augmented Lagrangian is minimized in an alternate fashion. Although the standard form

(2.33) may seem restrictive at first sight, it is in fact as general as one can wish for. Any

optimization problem can be written in form (2.33) as follows. Assume that the problem

at hand is minimizing a real-valued objective f(x) over some set C. Let IC denotes the

indicator function of the set C, which takes the value 0 in C and the value +∞ outside of C.

Then, we can equivalently write it in standard form as

minimize
x

f(x) + IC(z)

subject to x− z = 0,

(2.38)

and the ADMM iterations are as follows

xk+1 := argmin
x

{
f(x) + (ρ/2)‖x− zk + uk‖2F

}
, (2.39)

zk+1
i := projC

(
xk+1 + uk

)
, (2.40)

uk+1 := uk + xk+1 − zk+1, (2.41)
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where uk = (1/ρ)yk is the scaled dual vector. For the above iterations to make sense in terms

of computational tractability, the projection operation onto the set C has to be efficiently

computable.

2.6 Stability of autonomous systems

In this section, we review some basic notions of stability. For a thorough treatment, we refer

the reader to [62]. Let B(x0, r) denote the ball of radius r centered at x0, i.e.

B(x0, r) = {x ∈ Rn | ‖x− x0‖2 < r}. (2.42)

Moreover, let dist(x,M) denote the distance of a point x to a set M , that is

dist(x,M) = inf
x0∈M

‖x− x0‖2. (2.43)

In addition, we need to define the following set:

Mε = {x ∈ Rn | dist(x,M) < ε}. (2.44)

Now, consider the autonomous system

ẋ = f(x), (2.45)

where f : Rn → Rn is a locally Lipschitz function. Without loss of generality, assume that

x = 0 is an equilibrium for (2.45), that is f(0) = 0. Then, x = 0 is stable if, for all ε > 0,

there exists a δ > 0 such that

x(0) ∈ B(0, δ)⇒ x(t) ∈ B(0, ε), ∀ t ≥ 0, (2.46)
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and unstable if it is not stable. The origin x = 0 is (locally) attractive if for all ε > 0, there

exists a δ > 0 and a time T > 0 such that

x(0) ∈ B(0, δ)⇒ x(t) ∈ B(0, ε), ∀ t ≥ T. (2.47)

The origin is asymptotically stable if it is stable and locally attractive.

A set M is invariant with respect to (2.45) if

x(0) ∈M ⇒ x(t) ∈M, ∀ t ≥ 0. (2.48)

A closed invariant set M is stable if, for all ε > 0, there exists δ > 0 such that

x(0) ∈Mδ ⇒ x(t) ∈Mε, ∀ t ≥ 0, (2.49)

and (locally) attractive if for all ε > 0, there exists a δ > 0 and a time T > 0 such that

x(0) ∈Mδ ⇒ x(t) ∈Mε, ∀ t ≥ T. (2.50)

A closed invariant set is asymptotically stable if it is stable and attractive. A closed invariant

set M is unstable if it is not stable, that is if, there is an ε > 0, such that for all δ > 0

x(t) /∈Mε, for some x(0) ∈Mδ. (2.51)

and some t ≥ 0. A closed invariant set M is uniformly unstable if, there is an ε > 0, such

that for all δ > 0 and all x ∈M

x(t) /∈Mε, for some x(0) ∈ B(x, δ), (2.52)

and some t ≥ 0. Intuitively, ifM is uniformly unstable, one can find an initial condition x(0)

arbitrarily close to any x ∈ M , such that the trajectory x(t) of the system eventually exits
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the set Mε. A closed invariant set M is non-attractive if it is not attractive and uniformly

non-attractive if the initial condition x(0) can be chosen in a neighborhood of any x ∈M .

2.7 Group theory and differential geometry

In this section, we briefly review several elementary facts from group theory and differential

geometry. For a more detailed and rigorous treatment, we refer the reader to [32, 38, 104,

1, 68].

A d-dimensional manifold M can be informally defined as a set M that is locally home-

omorphic to the Euclidean space Rd. The tangent space TxM at a point x ∈ M is the

vector space consisting of all the tangents of all smooth curves in M passing through x.

A Riemannian manifold is a manifold whose tangent spaces are equipped with a smoothly

varying inner product, which is called a Riemannian metric. We use the notation g(ξ, ζ) to

denote the inner product of two elements ξ, ζ ∈ TxM (where the point x will be clear from

the context). The metric naturally induces a norm ‖ξ‖ .=
√
g(ξ, ξ).

A geodesic curve on M is the generalization of a straight line (that is, a curve with zero

acceleration). We denote as γx,ξ(t) the geodesic emanating from x in the direction of ξ ∈

TxM. The exponential map expx : TxM→M is defined as expx ξ
.
= γx,ξ(1). The logarithm

map logx :M→ TxM is the inverse of the exponential map and is generally defined only in

a neighborhood of x. Where defined, we have the identity d(x, y) = ‖logx(y)‖, where d(x, y)

is the Riemannian distance of x, y induced by the metric.

Let F :M→N be a smooth map between two manifoldsM and N . The linear mapping

DF (x) : TxM→ TF (x)M, ξ 7→ DF (x)[ξ],
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is called the differential of F at x. For any curve γ(t) onM we have

DF (γ(t))[γ̇(t)] =
d

dt
F (γ(t)). (2.53)

Furthermore, given a real-valued function f : M→ R, the Riemannian gradient grad f(x)

of f at a point x ∈M is the unique element of TxM satisfying

g(grad f(x), ξ) = Df(x)[ξ], (2.54)

for all ξ ∈ TxM. The Riemannian Hessian is the self-adjoint linear map

Hess f(x) : TxM→ TxM, ξ 7→ Hess f(x)[ξ],

satisfying

g(ξ,Hess f(x)[ξ]) =
d2

dt2
f(γx,ξ(t))

∣∣∣∣
t=0

, (2.55)

for all ξ ∈ TxM.

LetM,N be manifolds such that N ⊂M. If N has the subspace topology inherited from

M, then N is called an embedded submanifold ofM andM is termed the emdedding space.

Note that given a Riemannian metric on M, its restriction to N induces a Riemmanian

metric on N .

A group (G, ·) is a set G along with a binary operation · : G×G→ G satisfying the axioms

of closure, associativity, existence of an identity element e ∈ G and existence of inverse for

each element in the group. A Lie group is a group that is also a manifold. If G is a group

andM is a set, a left action of G onM is a map G ×M →M, written as (g, p) 7→ g · p,

satisfying g1 · (g2 · p) = (g1g2) · p, for all g1, g2 ∈ M,p ∈ M and e · p = p for all p ∈ M.

The action is said continuous if the corresponding map is continuous, and it is said free if

g · p = p for some p ∈M implies that g = e. A group action induces an equivalence relation

∼ onM: for any x, y ∈M, x ∼ y if y = g · x for some g ∈ G.
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LetM be a manifold equipped with an equivalence relation ∼. The equivalence class of a

point x ∈M is denoted by [x] = {y ∈M : y ∼ x}. The quotient space M =M/∼ is the set

of all equivalence classes andM is termed the total space or ambient space. The canonical

projection is the map π : M → M defined by π(x) = [x]. The quotient space is called a

quotient manifold if the canonical projection is a submersion, that is the differential of π at

every point is surjective. If the quotient space is a manifold and dim(M/∼) < dim(M), then

each equivalence class π−1(π(x)) , x ∈ M, is an embedded submanifold of M. Consider

any x ∈ M and let x ∈ π−1(x) ⊆ M. The vertical space Vx = Tx(π−1(x)) at x is the

tangent space to the equivalence class π−1(x). The horizontal space Hx is the orthogonal

complement of Vx in TxM, that is,

Vx ⊕Hx = TxM. (2.56)

Given any and ξ ∈ TxM, there exists exactly one horizontal lift ξx ∈ Hx satisfying

Dπ(x)[ξ] = ξ.

In the context of this work, we will frequently use the Lie group of three dimensional rotations

SO(3) = {R ∈ R3×3 : RTR = I, det(R) = 1}. (2.57)

The tangent space at a point R ∈ SO(3) is given by

TRSO(3) = {RΩ : Ω ∈ so(3)}, (2.58)

where so(3) denotes the vector space of 3×3 skew-symmetric matrices. Given R,Q ∈ SO(3)

and ξ ∈ TRSO(3), the exponential and the logarithm maps are given by

expR(ξ) = R expI(R
T ξ), (2.59)

logR(Q) = R logI(R
TQ), (2.60)
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where expI and logI denote the exponential and the logarithm map at the identity which

coincide with the matrix exponential and logarithm. For the group of rotations there are

explicit formulas, e.g. Rodrigues’ formula, for the matrix exponential and the matrix loga-

rithm [84]. Before defining the metric of manifold of rotations, we need to introduce some

notation,. The hat operator ∧ : R3 → so(3) is defined as

û
.
=


0 −u3 u2

u3 0 −u1

−u2 u1 0

 , (2.61)

where u = (u1, u2, u3)T . If u, v ∈ R3 and × denotes the cross product of vectors in R3, then

u × v = ûv. The inverse map of hat operator is the vee operator ∨ : so(3) → R3. The

standard metric of SO(3) at a point R ∈ SO(3) is given by

g(ξ1, ξ2) =
1

2
tr(ξT1 ξ2) =

1

2
tr(ΩT

1 Ω2) = ωT1 ω2, (2.62)

where ξi = RΩi ∈ TRSO(3) and ω1 = Ω∨1 .

For modeling the translational part of the trifocal tensor, we use Kendall’s shape space [61].

Following the Kendall’s notation, we define

S3
2 = {X ∈ R2×2 : ‖X‖F = 1}, (2.63)

as the space of triangles in 2-D. The tangent space at a point X ∈ S3
2 is

TXS3
2 = {ξ ∈ R2×2 : tr(XT ξ) = 0} = X⊥, (2.64)

and the Riemannian metric is the usual Euclidean inner product. We also introduce the

space

S3∗
2 = {X ∈ S3

2 : rank(X) = 2} ⊂ S3
2, (2.65)
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which is the space of non-degenerate triangles. Finally, the exponential and the logarithm

maps can be computed as

expX(ξ) = cos(‖ξ‖)X +
sin(‖ξ‖)
‖ξ‖

ξ, (2.66)

logX(Y ) =
arccos(tr(XTY ))√

1− tr(XTY )2
(Y −X tr(XTY )), (2.67)

for X,Y ∈ S3
2 and ξ ∈ TXS3

2.
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Chapter 3

Distributed permutation

synchronization

3.1 Introduction

In this chapter, we consider the problem of multiway matching with fully observable pair-

wise associations. We formulate it as an instance of permutation synchronization which

refers to recovering a set of permutations from noisy relative permutations. We present two

novel distributed optimization algorithms for permutation synchronization. The first con-

sists of a consensus-like algorithm that results from a convex relaxation of the permutation

synchronization problem. We show that this consensus-like algorithm is fully decentralized,

provably converges, does not depend on initialization and guarantees cycle consistency. The

second algorithm is a distributed projected gradient descent on the set of doubly stochastic

matrices that enforces cycle consistency while promoting sparsity.

The remainder of this chapter is structured as follows. A formalization of permutation

synchronization is the subject of Section 3.2 followed by the proposed problem formulation

in Section 3.3. The first approach is presented in Section 3.4 and the second one, along with
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the combined algorithm, is presented in Section 3.5.

3.2 Problem statement

In this section, we formalize the problem of permutation synchronization. We assume there

are m collections, each containing n features. For instance, consider the case of m images of

a car from different viewpoints, each having n keypoints. The pairwise association between

collections i and j, denoted by πij ∈ Sn, is defined as follows: we have that πij(k) = l if

the kth feature in collection j corresponds to the lth feature in collection i. We denote by

π̃ij ∈ Sn the, possibly erroneous, estimated pairwise association between collections i and

j, which is the output of some pairwise matching algorithm, e.g. graph matching, and let

Π̃ij denote the corresponding matrix representation of π̃ij .

The availability of a pairwise measurement between collections i and j defines a graph

G = (V, E) as follows: the vertex set contains the m collections, that is V = {1, 2, . . . ,m},

and {i, j} ∈ E if there is a pairwise association π̃ij between collections i and j. We assume

that there are no self-loops, that is {i, i} /∈ E for any i ∈ V and the measured pairwise

associations are symmetric, in the sense that π̃ji = π̃−1
ij (resp. Π̃ji = Π̃T

ij) for all {i, j} ∈ E .

We refer to this graph G as the sensor graph.

Related to the sensor graph G is the data association graph D = (VD, ED, wD), where VD =

V×{1, 2, . . . , n}. There is an edge from (i, l) to (j, k) if and only if {i, j} ∈ E and (Π̃ij)lk = 1.

Before stating the problem at hand, we need a precise definition of cycle consistency [53].

Definition 3.2.1 (Cycle consistency). A set of pairwise associations {π̃ij}{i,j}∈E is cycle

consistent if for any cycle i0, i1, . . . , ik, i0 we have

π̃i0i1 ◦ π̃i1i2 ◦ . . . ◦ π̃iki0 = e, (3.1)

where e is the identity permutation and ◦ denotes the function composition.
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Next, we present a necessary and sufficient condition for cycle consistency, originally iden-

tified in [53].

Lemma 3.2.2 (Consistency and the universe of features). Assume that the sensor G is

connected. Then, a set of pairwise associations {π̃ij}{i,j}∈E is consistent if and only if there

exist π1, π2, . . . , πm ∈ Sn (resp. Π1,Π2, . . . ,Πm ∈ Pn), such that

π̃ij = πi ◦ π−1
j (resp. Π̃ij = ΠiΠ

T
j ), (3.2)

for all {i, j} ∈ E.

Proof. First, assume that there exist π1, π2, . . . , πm ∈ Sn such that π̃ij = πi ◦ π−1
j for all

{i, j} ∈ E . Then, for any cycle i0, i1, . . . , ik, i0 we have

π̃i0i1 ◦ π̃i1i2 ◦ . . . ◦ π̃iki0 = πi0 ◦ π−1
i1
◦ πi1 ◦ π−1

i2
◦ . . . ◦ πik ◦ π

−1
i0

= e,

and thus, cycle consistency is satisfied.

Conversely, assume that cycle consistency is satisfied. Define π1 = e and for any vertex

i0 6= 1, define πi0
.
= π̃i0i1 ◦ π̃i1ik ◦ . . . ◦ π̃ik1 where i0, i1, . . . , ik, 1 is a path from i0 to 1

(and vice versa). Such a path exists since G is assumed to be undirected and connected.

Moreover, by cycle consistency, the above definition does not depend on the choice of the

path. Then, for all {i0, j0} ∈ E , by cycle consistency, we have

π̃i0j0 = π̃i0i1 ◦ . . . ◦ π̃ik1 ◦ π̃1jk ◦ . . . π̃j1j0 = πi0 ◦ π−1
j0
.

The proof is complete.

Intuitively, πi ∈ Sn is a permutation from the local feature enumeration (local labels)

of collection i to some global feature enumeration (global labels), termed the “universe of

features” in some works [23, 156]. Next, we present the cycle consistency conditions, as stated
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π̃42

π̃12 π̃23

π̃14 π̃34

Figure 3.1: In this example, cycle consistency is satisfied if and only if π̃14 ◦ π̃42 = π̃12,
π̃34 ◦ π̃42 = π̃32 and π̃14 ◦ π̃43 = π̃12 ◦ π̃23.

by Huang and Guibas [53], in terms of the representations of the pairwise associations in

the special case when all pairwise associations are available.

Lemma 3.2.3 (Conditions for consistency [53]). Assume that the sensor G is fully connected,

that is {i, j} ∈ E for all i 6= j. Given pairwise associations {π̃ij}{i,j}∈E , where each π̃ij ∈ Sn,

define the block matrix Π̃ by [Π̃]ij = Π̃ij for i 6= j and [Π̃]ii = In, where Π̃ij is the matrix

representation of π̃ij. Then, the following are equivalent:

(i) The set of pairwise associations {π̃ij}(i,j)∈E is consistent.

(ii) rank(Π̃) = n and Π̃ can be factorized as

Π̃ =



Π1

Π2

...

Πm


·
[
ΠT

1 ΠT
2 · · · ΠT

m

]
. (3.3)

for some Π1,Π2, . . . ,Πm ∈ Pn.

(iii) Π̃ � 0.

Next, we present the problem statement.

Definition 3.2.4 (Permutation synchronization). Given, possibly erroneous, pairwise as-

sociations {π̃ij}{i,j}∈E , estimate consistent pairwise associations {πij}{i,j}∈E that are close to

the given ones or, equivalently, find permutations π1, π2, . . . , πm ∈ Sn (resp. Π1,Π2, . . . ,Πm ∈
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Figure 3.2: Example with m = 3 collections C1, C2, C3 observing n = 3 features. Top:
consistent associations. Bottom: inconsistent associations since π12◦π23(2) = 3 but π13(2) =
2 and thus, π12 ◦ π23 6= π13 violating cycle consistency.

Pn), such that

π̃ij ≈ πi ◦ π−1
j , (resp. Π̃ij ≈ ΠiΠ

T
j ), (3.4)

for all {i, j} ∈ E.

3.3 Proposed formulation

We cast the problem of permutation synchronization as the following combinatorial opti-

mization problem:

minimize
π1,...,πm∈Sn

∑
{i,j}∈E

d(πi ◦ π−1
j , π̃ij). (3.5)

where d(·, ·) is the distance of symmetric group as defined as (2.18). Unfortunately, prob-

lem (3.5) is computationally intractable. For this reason, we first, derive an equivalent

formulation of problem (3.5) in terms of the matrix representations Π1, . . . ,Πm ∈ Pn of

π1, . . . , πm ∈ Sn and then, relax the domain of the equivalent formulation from permuta-
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tion matrices to doubly stochastic matrices.

We consider the following cost for each edge {i, j} ∈ E , φij : Sn ×Sn → R+ defined as

φij(πi, πj)
.
= d(πi ◦ π−1

j , π̃ij) = d(πi, π̃ijπj). (3.6)

Since, d(πi, π̃ijπj) = (1/2)‖Πi − Π̃ijΠj‖2F , the edge costs can by naturally extended to take

permutation matrices as arguments, by defining φij : Pn × Pn → R+ as follows

φij(Πi,Πj)
.
=

1

2
‖Πi − Π̃ijΠj‖2F . (3.7)

Observe that since Π̃ij is a permutation matrix and we have assumed Π̃T
ij = Π̃ji, it follows

that the edge costs φij are symmetric, in the sense,

φij(Πi,Πj) = φji(Πj ,Πi). (3.8)

Then, problem (3.5) is equivalent to the following problem:

minimize
{Πi}i∈V

φ({Πi}i∈V)
.
=

∑
{i,j}∈E

φij(Πi,Πj)

subject to Πi ∈ Pn.

(3.9)

The above optimization problem is still computationally intractable due to its combinatorial

nature. To address this problem, we propose to relax the domain of the problem from the

set of permutation matrices to its convex hull, the set of doubly stochastic matrices. This

is the topic of the next section.

It can be easily that the objective φ remains unchanged if the matrices {Πi}i∈V are all right-

multiplied by the same permutation. This observation suggests that the global minimizer

of problem (3.9) is not unique. This is summarized in the following remark.
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Remark 3.3.1 (Global minimizer is not unique). For any permutation matrix Π0 ∈ Pn,

φ({Πi}i∈V) = φ({ΠiΠ0}i∈V). (3.10)

Thus, if the feasible point {Πi}i∈V is globally optimal for problem (3.9) then,

{ΠiΠ0}i∈V

is globally optimal as well for any permutation matrix Π0 ∈ Pn.

3.4 A first approach by convex relaxation

3.4.1 The convex relaxation

Problem (3.9) is computationally intractable due to the permutation constrains. For this

reason, we relax the problem domain from the set of permutations to its convex hull, the

set of doubly stochastic matrices. In this way, we obtain the following convex optimization

problem:

minimize
{Πi}i∈V

φ({Πi}i∈V)

subject to Πi1n = 1n,

1TnΠi = 1Tn , ∀ i ∈ V

Πi ≥ 0,

Π1 = I,

(3.11)

where the edge cost functions φij are implicitly extended to take matrices with real entries

as arguments.

Let Π = [ΠT
1 · · ·ΠT

m]T ∈ Rmn×n. With a slight abuse of notation we write φ(Π) as a

shorthand for φ({Πi}i∈V) and we view φ as real-valued function defined on Rmn×n. Observe
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that

φ(Π) =
1

2
tr(ΠTL(D)Π), (3.12)

where L(D) is the Laplacian of the data association graph, that is

[L(D)]ij =


|Ni| In, if i = j,

−Π̃ij , if i 6= j, {i, j} ∈ E ,

0, otherwise.

(3.13)

Moreover, let C denote the constraint set of problem (3.11). Then, problem (3.11) can be

written more compactly as follows

minimize
Π∈Rmn×n

1

2
tr(ΠTL(D)Π)

subject to Π ∈ C.
(3.14)

3.4.2 The update rule and its limit

We propose to solve problem (3.14) by distributed projected gradient descent with a constant

step size ε > 0. The updates are given by

Π(t+ 1) = ProjC((I − εL(D))Π(t)). (3.15)

In this particular case, projected gradient descent iterations take the following form:

Π1(t+ 1) = Π1(t) = I,

Πi(t+ 1) = (1− ε |Ni|)Πi(t) + ε
∑
j∈Ni

Π̃ijΠj(t), i = 2, 3, . . . ,m,
(3.16)

which can be written as the following discrete time linear system:

Π(t+ 1) = Pε(D′)Π(t), (3.17)
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where Pε(D′) = I − εL(D′) is the Perron matrix of the digraph D′ which is almost identical

to the data association graph D. The digraph D′ can be obtained from the data association

graph D as follows. The vertex set of D′ is the same as the vertex set of D, that is VD′ =

V × {1, 2, . . . , n}. There is an edge from (i, l) to (j, k) if and only if {i, j} ∈ E , (Π̃ij)lk = 1

and j 6= 1.

Next, we find the range of values for the step size ε that results in convergence guarantees.

Proposition 3.4.1. For ε ∈ (0, 1/dmax(G)), the sequence {Π(t)}t=0,1,2,..., as generated by

(3.15), converges to a global minimizer of problem (3.11) from any initialization. Further-

more, the limit Π = limt→∞Π(t) of the sequence {Π(t)}t=0,1,2,... satisfies Π1 = I and

∑
j∈Ni

(Πi − Π̃ijΠj) = 0, i = 2, 3, . . . ,m. (3.18)

Proof. The convergence of the sequence {Π(t)}t=0,1,... follows directly from the fact that

limk→∞ Pε(D′)k exists (see proof of Theorem 3.4.5). Convergence to a stationary point of

problem (3.11) follows directly from Lemma 2.4.1 and from the fact that the maximum

eigenvalue of L(D) is less or equal to 2dmax(G). Since the problem at hand is convex, a

stationary point is globally optimal. Finally, the limit Π = limt→∞Π(t) of the sequence

{Π(t)}t=0,1,2,... satisfies Π = Pε(D′)Π which yields L(D′)Π = 0 which is equivalent to (3.18).

The proof is complete.

Next, we show that under perfect pairwise associations, the true labels {Πi}i∈V are recovered

(up to a global permutation).

Lemma 3.4.2. In the absence of outliers, we have that

lim
t→∞

Π(t) =

[
ΠT

10 ΠT
20 · · · ΠT

m0

]T
(3.19)

for some Π10,Π20, . . . ,Πm0 ∈ Pn such that Π10 = I and Π̃ij = Πi0ΠT
j0 for all {i, j} ∈ E.

Proof. In the absence of outliers, we know that there exist permutations Π10, . . . ,Πm0 such
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that Π10 = I and Π̃ij = Πi0ΠT
j0 for all {i, j} ∈ E . Define Π′i

.
= Π−1

i0 Πi. Then, (3.18) can be

equivalently written as follows

Π′1 = I,∑
j∈Ni

(Π′i −Π′j) = 0, i = 2, 3, . . . ,m,
(3.20)

or equivalently

(L(G′)⊗ In)Π′ = 0, Π′1 = I, (3.21)

where the digraph G′ is constructed from the sensor graph G as follows: G′ has the same

vertex set as G and for each edge {i, j} ∈ E we add two edges (i, j) and (j, i) in the edge

set of G′. The only constraint is that vertex 1 is allowed to have only outgoing edges. It

can be easily seen that if G is connected then the digraph G′ has a rooted out-branching

as a subgraph. In this case, by Proposition 3.8 [87], the rank of L(G′) is m − 1 and the

nullspace of L(G′) is spanned by the vector of all ones. Therefore, in this case, (3.21) implies

Π′1 = Π′2 = . . . = Π′m = I. The proof is complete.

Remark 3.4.3 (Reduction to consensus). In the absence of outliers, we know that there

exist permutations Π10, . . . ,Πm0 such that Π10 = I and Π̃ij = Πi0ΠT
j0 for all {i, j} ∈ E.

Define Π′i
.
= Π−1

i0 Πi. Then, the update rule (3.16) can be equivalently written

Π′1(t+ 1) = Π′1(t) = I,

Π′i(t+ 1) = (1− ε |Ni|)Π′i(t) + ε
∑
j∈Ni

Π′j(t), i = 2, 3, . . . ,m.
(3.22)

Next, we analytically compute the limit of the sequence {Π(t)}t=0,1,2,.... First, we write the

Perron matrix Pε(D′) = I − εL(D′) of digraph D′ in block form as follows

Pε(D′) =

 In 0

P21 P22

 , (3.23)
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where P21 ∈ R(m−1)n×n and P22 ∈ R(m−1)n×(m−1)n.

Lemma 3.4.4. The matrix P22 as defined in (3.23) satisfies

lim
k→∞

P k22 = 0. (3.24)

Proof. We observe that Pε(D′) is the state transition matrix of a Markov chain whose first

n states are absorbing and, given that G is connected, the remaining states are transient.

The desired result follows directly from the results of Section 3.8 of [33] .

Theorem 3.4.5. Assume that the sensor graph G is connected and ε ∈ (0, 1/dmax(G)).

Then, we have

lim
k→∞

Pε(D′)k =

 I 0

(I − P22)−1P21 0

 =

 I 0

[L(D)]−1
22 [A(D)]21 0

 . (3.25)

As a consequence, for Π1(0) = I and any Π2(0), . . . ,Πm(0), we get

lim
t→∞

Π(t) =

 I

[L(D)]−1
22 [A(D)]21

 . (3.26)

Proof. By induction on k, we have for all positive integers k that

Pε(D′)k =

 I 0

(I + P22 + . . .+ P k22)P21 P k22

 (3.27)

Moreover, since limk→∞ P
k
22 = 0, it follows that (see Lemma 3.10 of [33])

lim
k→∞

(I + P22 + . . .+ P k22) = (I − P22)−1. (3.28)

Since P22 = I−ε[L(D)]22 and P21 = [A(D)]21, it follows that (I−P22)−1P21 = [L(D)]−1
22 [A(D)]21,

which concludes the proof.
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Finally, after the convergence of the proposed distributed protocol to a set of doubly stochas-

tic matrices {Π̃i}i∈V , we project the solution onto the set of permutation matrices by solving:

maximize
Πi

〈Π̃i,Πi〉

subject to Πi ∈ Pn.
(3.29)

The above problem can be solved efficiently using the Hungarian algorithm [67] in O(n3)

time. Naturally, we have the following lemma.

Lemma 3.4.6. The reconstructed pairwise associations defined by Πij
.
= ΠiΠ

T
j for all

{i, j} ∈ E are consistent.

3.4.3 KKT conditions

At this point, we derive the optimality conditions for problem (3.11) along with several

properties of problem (3.11). First of all, since problem (3.11) is a convex optimization

problem, the Karush-Kuhn-Tucker (KKT) conditions [18] are necessary and sufficient for

optimality. The Lagrangian of problem (3.11) is given by

L({Πi, µi, νi, Zi}i∈V , Y1) =
1

2
tr(ΠTL(D)Π) + tr(Y T

1 (Π1 − I))

+
∑
i∈V

(
µTi (Πi1− 1) + νTi (ΠT

i 1− 1)− tr(ΠT
i Zi)

) (3.30)

where for all i ∈ V, µi ∈ Rn are the Lagrange multipliers associated with the constraints

Πi1 = 1, νi ∈ Rn are the Lagrange multipliers associated with the constraints ΠT
i 1 = 1,

Y1 is the Lagrange multiplier associated with the constraint Π1 = I and Zi ∈ Rn×n are

the Lagrange multipliers associated with the nonnegativity constraint Πi ≥ 0. The KKT

conditions consist of the condition that the gradient of the Lagrangian with respect to Πi

must vanish, the feasibilty of Πi, the (dual) feasibilty of Zi and complementary slackness.
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The KKT conditions for problem (3.11) are summarized below:

∑
j∈Ni

(Πi − Π̃ijΠj) + µi1
T + 1νTi − Zi = 0, (3.31)

∑
j∈N1

(Π1 − Π̃1jΠj) + Y1 = 0, (3.32)

Πi1 = 1, (3.33)

ΠT
i 1 = 1, (3.34)

Π1 = I, (3.35)

Πi ≥ 0, (3.36)

Zi ≥ 0, (3.37)

Πi � Zi = 0, (3.38)

for all i = 2, . . . ,m.

Lemma 3.4.7. The limit of the sequence generated by protocol (3.15) satisfies the KKT

conditions.

Proof. It can be easily checked that the following values for the Lagrange multipliers satisfy

the KKT conditions:

µi = νi = 0, Zi = 0, Y1 = −
∑
j∈N1

(I − Π̃1jΠj). (3.39)

3.5 A nonconvex distributed optimization approach

In this section, we present a different approach to approximately solving problem (3.9). We

propose to add a regularizer that penalizes deviations from the set of permutation matrices.
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Let ψ denote the real-valued function defined by

ψ(X) = −1

2
tr(XTX) = −1

2
‖X‖2F . (3.40)

Next, we show that the set of local and global minimizers of ψ coincides with Pn, the set of

n× n permutation matrices.

Lemma 3.5.1. We have that

(i) The set of global minima of ψ over the set Dn of n × n doubly stochastic matrices is

exactly Pn, namely the set of n× n permutation matrices.

(ii) A doubly stochastic matrix X ∈ Dn is a local minimum of ψ if and only if X ∈ Pn, or

in other words, ψ does not have local minima that are not global.

Proof. Let xTi denote the ith row of a n × n doubly stochastic matrix X. We note that

‖xi‖22 ≤ 1 and ‖xi‖22 = 1 if and only if xi contains exactly on element equal to 1 and all

other equal to 0. Therefore, ψ is minimized or equivalently ‖X‖2F is maximized over the

set of doubly stochastic matrices when all rows of X have norm 1, that is when X is a

permutation matrix. So, the first part has been proved. For the second part, we observe

that ψ is a strictly concave function. It is a well-known fact from convex analysis [112], that

the minima (local and global) of a strictly concave function over a bounded polyhedron must

be extrema of the the polyhedron. Since the extrema of the polyhedron of doubly stochastic

matrices are permutation matrices, the second part trivially follows.

We formulate permutation synchronization as the following optimization problem over the

set of n× n doubly stochastic matrices:

minimize
{Πi∈Dn}i∈V

φγ ({Πi}i∈V)
.
= −(1− γ)

∑
{i,j}∈E

tr(ΠT
i Π̃ijΠj)−

γ

2

∑
i∈V

tr(ΠT
i Πi) (3.41)

where 0 < γ < 1. We propose to numerically solve problem (3.41) by projected gradient

descent with constant step size ε. That is, at every time step t, each Πi, i ∈ V, is updated
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as follows:

gradΠi φγ ({Πi(t)}i∈V) = −(1− γ)
∑
{i,j}∈E

Π̃ijΠj(t)− γΠi(t) (3.42)

Πi(t+ 1) = ProjDn
(
Πi(t)− ε gradΠi φγ ({Πi(t)}i∈V)

)
. (3.43)

Next, we derive conditions on the step size ε that guarantee convergence of the proposed

projected gradient descent rule to a stationary point of problem (3.41). The maximum

allowed step size depends on the choice of γ and on the spectrum of the Hessian of the

objective φγ . A uniform upper bound on the maximum eigenvalue of the Hessian of φγ is

presented in the following lemma.

Lemma 3.5.2. The maximum eigenvalue of the Hessian of the objective can be uniformly

upper bounded by

λmax(Hessφγ) ≤ −γ + (1− γ)dmax(G). (3.44)

The proof of the above lemma is a straightforward application of Gershgorin discs theorem

[51]. An immediate consequence of the above lemma, is that the objective becomes concave

for some values of γ. This is summarized in the following corollary.

Corollary 3.5.3. Let

γmax =
dmax(G)

1 + dmax(G)
. (3.45)

Then, for γ > γmax, the objective φγ is strictly concave.

The convergence properties of the proposed method and the corresponding range of the

parameters γ and ε are summarized in the following theorem.

Theorem 3.5.4. For 0 < γ < γmax. every limit point of the sequence generated by the

proposed update rule asymptotically is a stationary point of problem (3.41) for any step size

ε satisfying

0 < ε <
2

−γ + (1− γ)dmax(G)
. (3.46)
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The overall proposed approach for permutation synchronization is presented in Algorithm 1.

We get an initial solution via the convex relaxation method of the previous section. Then,

we solve the regularized problem (3.41) twice. Once for γ ∈ (0, γmax) and one for γ ∈

(γmax, 1) that will almost surely return permutations due to the concavity of the objective.

Experimental results for MatchDPS are included in the next chapter along with the results

of the more general approach of that chapter.

Algorithm 1 MatchDPS - Distributed Permutation Synchronization

Input: Pairwise associations {Π̃ij}{i,j}∈E .
Ouput: Labels {Πi}i∈V , consistent associations {Πij

.
= ΠiΠ

T
j }{i,j}∈E

Pick a step size ε ∈ (0, 1/dmax(G)).
for t = 0, 1, 2, . . . , T do

Π1(t+ 1) = I
Πi(t+ 1) = Πi(t)− ε

∑
j∈Ni(Πi(t)− Π̃ijΠj(t)), i = 2, 3, . . . ,m.

end for
Pick a γ ∈ (0, γmax) and a step size ε ∈ (0, 2/(−γ + (1− γ)dmax(G))
for t = 0, 1, 2, . . . , T do
Wi(t) = (1− γ)

∑
{i,j}∈E Π̃ijΠj(t) + γΠi(t), i = 1, 2, . . . ,m.

Πi(t+ 1) = ProjDn (Πi(t) + εWi(t)), i = 1, 2, . . . ,m.
end for
Pick a γ ∈ (γmax, 1) and a step size ε > 0.
for t = 0, 1, 2, . . . , T do
Wi(t) = (1− γ)

∑
{i,j}∈E Π̃ijΠj(t) + γΠi(t), i = 1, 2, . . . ,m.

Πi(t+ 1) = ProjDn (Πi(t) + εWi(t)), i = 1, 2, . . . ,m.
end for

3.6 Conclusions

In this chapter, we proposed two novel and fully decentralized approaches for the problem

of permutation synchronization along with a combined algorithm. The first approach con-

sisted of a convex relaxation of the permutation synchronization problem which we solve

by a consensus-like algorithm with global convergence guarantees. The second approach

was a nonconvex regularized relaxation of permutation synchronization, numerically solved

with projected gradient descent. We rigorously analyzed the convergence properties of the

proposed numerical methods and explored the connection with consensus algorithms.
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Chapter 4

Distributed consistent multiway

matching

4.1 Introduction

In this chapter, we present a novel distributed optimization approach to the problem of

multiway matching under partially observable pairwise associations. We show that the

proposed method provably converges and produces, by construction, consistent associations.

The proposed approach, albeit decentralized, demonstrates performance comparable to the

state of the art centralized approaches.

The remainder of this chapter is structured as follows. A formalization of multiway matching

is the subject of Section 4.2 followed by the proposed approach in Section 4.3. Finally,

experimental evaluation and comparison with existing approaches are included in Section

4.4.
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4.2 Problem statement

In this section, we formalize the problem of consistent multiway matching for the case of

occlusions, that is, we assume that each collection of features (sensor) contains (observes) a

subset of the total available features. We assume there are m collections and each collection

i has ni features and let N =
∑m

i=1 ni. Let K denote the total number of distinct features,

termed size of the “universe of features” [23, 156], with ni ≤ K for all i = 1, . . . ,m. We

have that (X̃ij)lk = 1 if the kth feature in collection j corresponds to the lth features in

collection i. As in the previous chapter, the availability of pairwise measurement X̃ij defined

a graph G = (V, E). Then, assuming that G is connected, the set of pairwise correspondences

{X̃ij}i,j∈E is (cycle) consistent if and only if

X̃ij = XiX
T
j , ∀{i, j} ∈ E , (4.1)

for some partial permutation matrices X1, X2, . . . , Xm such that each Xi ∈ Pni,K . Intu-

itively, Xi ∈ Pni,K is the matrix representation of a (partial) permutation map πi : [ni] →

[K] from the labels of collection i to some global labels, termed the “universe of features”

[23, 156]. Then, we state the problem we address in this chapter.

Problem Statement 4.2.1. Given pairwise associations {X̃ij}{i,j}∈E , estimate consistent

pairwise associations {Xij}i,j∈E that are close to the given ones in a decentralized fashion.

Equivalently, given, possibly erroneous, pairwise associations {X̃ij}{i,j}∈E , find partial per-

mutations {Xi}i∈V , such that

X̃ij ≈ XiX
T
j , ∀{i, j} ∈ E . (4.2)
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4.3 Problem formulation

In this section, we present our proposed approach. Intuitively, we formulate consistent

multiway matching as an optimization problem on the set of partial permutation matrices.

Due to computational intractability, we relax the domain of the optimization problem from

partial permutation matrices to partial doubly stochastic matrices and we add a regularizer

to the objective to penalize deviations from the set of partial permutations. Then, we

solve the relaxed problem by distributed projected gradient descent with constant step size.

Finally, we provide a bound on the maximum step size for which the proposed method is

guaranteed to converge to a stationary point of the relaxed problem.

Based on the problem statement of the previous section, we formulate consistent multiway

matching as the following combinatorial optimization problem:

minimize
{Xi}i∈V

∑
{i,j}∈E

‖X̃ij −XiX
T
j ‖2F

subject to Xi ∈ Pni,K , ∀i ∈ V.

(4.3)

Existing works [53, 23, 156] for multiway matching attempt to find a low-rank positive defi-

nite matrix X ∈ RN×N that satisfies the consistency constraints and is close to the measured

one. However, these approaches are centralized and do not scale well with the number of

views. In contrast to these approaches that optimize over the pairwise correspondences, we

propose to solve directly for the labels {Xi}i∈V . The advantages of optimizing directly in the

label space are twofold. First, the resulting problem can be solved in a decentralized fashion

using distributed projected gradient descent, as we will shortly see. Second, the dimension

of the domain of the optimization problem reduces significantly from N2 to NK � N2.

There are two main reasons as to why problem (4.3) is challenging. The first challenge is

the combinatorial hardness due to the permutation constraints along with the nonlinearity

47



of the objective. This is customarily remedied by relaxing the domain of the problem

from permutations to doubly stochastic. This is, indeed, the path we follow. The second

challenge is that even if the domain of the problem was convex, the objective would still be

nonconvex. Therefore, we expect that the proposed optimization based approach returns

only local minimizers.

At this point, we introduce a regularizer that penalizes deviations from the set of partial

permutation matrices. Its definition and properties are summarized in the following lemma.

Lemma 4.3.1. Let φi : Dni,K → R defined by

φi(Xi) = (1/4)‖I −XiX
T
i ‖2F . (4.4)

Then,

(a) φi(Xi) ≥ 0 for all Xi ∈ Dni,K ,

(b) φi(Xi) = 0 if and only if Xi ∈ Pni,K .

The proof of Lemma 4.3.1 is fairly straightforward and therefore, omitted. Let

φij(Xi, Xj) = (1/2)‖X̃ij −XiX
T
j ‖2F , (4.5)

and

φ({Xi}i∈V) = γ
∑
i∈V

φi(Xi) + (1− γ)
∑
{i,j}∈E

φij(Xi, Xj), (4.6)

for some γ ∈ (0, 1). Typical value of γ is γ = 1/2. Based on Lemma 4.3.1, problem (4.3) is

equivalent to

minimize
{X}i∈V

φ({Xi}i∈V)

subject to Xi ∈ Pni,K , ∀i ∈ V,
(4.7)

which is in turn is relaxed to the following problem
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minimize
X

φ({Xi}i∈V)

subject to Xi ∈ Dni,K , ∀i ∈ V.
(4.8)

which is of the form (2.28).

The proposed approach is summarized in Algorithm 2. The gradient of the objective with

respect to each Xi, can be computed by

gradXi φ({Xi}i∈V) = γ(XiX
T
i − I)Xi + (1− γ)

∑
j∈Ni

(XiX
T
j − X̃ij)Xj . (4.9)

At every iteration we need to project the current estimate Xk
i onto Dni,K . For this purpose,

we propose an ADMM algorithm in Appendix A. Finally, to obtain a permutation matrix,

we employ the Hungarian algorithm [67].

Algorithm 2 MatchDGD

Input: Pairwise associations {X̃ij}{i,j}∈E , initial {X0
i }i∈V , step size ε > 0

Ouput: Partial permutations {Xi}i∈V , consistent associations {Xij
.
= XiX

T
j }i,j∈V

for k ∈ {0, 1, . . . ,K} do
W k
i = − gradXi φ({Xk

i }i∈V)

Xk+1
i = ProjDni,K

(
Xk
i + εW k

i

)
end for
Project Xi onto Pni,K using Hungarian algorithm.

Finally, we derive a bound on the maximum step size for the projected gradient descent part

of Algorithm 2. First, we need the following two lemmata.

Lemma 4.3.2. For any Ui ∈ Rni×K and Xi ∈ Dni×K , we have

〈Ui,Hessφi(Xi)[Ui]〉 ≤ 2〈Ui, Ui〉. (4.10)

Lemma 4.3.3. If X̃ij ≥ 0, X̃ij1 ≤ 1, X̃T
ij1 ≤ 1, then for any (Ui, Uj) ∈ Rni×K × Rnj×K ,

we have

〈(Ui, Uj),Hessφij(Xi, Xj))[(Ui, Uj)]〉 ≤ 3
(
‖Ui‖2F + ‖Uj‖2F

)
. (4.11)
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For detailed proofs, we refer the reader to Appendix C.1 and C.2. A corollary of the two

above lemmata and Proposition 2.4.2 now follows.

Corollary 4.3.4. For any X = [XT
1 · · ·XT

m]T , each Xi ∈ Dni,K , and U ∈ RN×K , we have

〈U,Hessφ(X)[U ]〉 ≤ (2γ + 3(1− γ)dmax(G)) 〈U,U〉. (4.12)

Next, we state the maximum allowed step size that guarantees convergence to a stationary

point of the relaxed problem (4.8).

Proposition 4.3.5. Given a step size ε ∈ (0, εmax), where

εmax =
2

2γ + 3(1− γ)dmax(G)
, (4.13)

the every limit point of the sequence generated by the proposed projected gradient descent

method for solving problem (4.8) is a stationary point.

The proof of the above proposition is a straightforward application of Corollary 4.3.4 and

Lemma 2.4.1. Next, we include experimental results on both synthetic and real data.

4.4 Experiments

4.4.1 Synthetic data

First, we evaluate the performance of the proposed method using synthetic data. We com-

pare the two proposed methods, MatchDPS and MatchDGD, against the spectral method

[101], the semidefinite programming approach MatchLift [23] and the rank-minimization

approach MatchALS [156].

Experiment in permutation synchronization. We fix the number of features in each

collection as n = 20. We vary the number of collections from 5 to 50 and the pairwise
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matching error rate from 0.1 to 0.9. To quantify the performance of each method, we use

the F-score, i.e. the harmonic mean of precision p and recall r, given by F =
2pr

p+ r
. The

output error we plot in Fig. 4.1 is then 1− F .
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Figure 4.1: Comparison of the proposed approach with the spectral method [101], MatchLift
[23] and MatchALS [156], under various input error rates and number of collections m. The
darker the area the smaller the output error rate.

4.4.2 Real data

Multiimage feature matching. Next, we compare the same methods in a multiimage

matching scenario. First, we use the CMU Hotel1 and House2 datasets, Although simple,

these datasets have been used in all prior works. The House sequence contains 111 images

and the Hotel sequence contains 101. We also include results on the first halfs of the

two sequences. In addition, we evaluate using the Affine Covariant Regions Datasets 3

(Wall, UBC, Bikes, Leuven, Trees, Graffiti, Bark) which consist of sequences of 6 images

with significant overlap but with viewpoint, scale and image quality variability. To obtain
1http://vasc.ri.cmu.edu/idb/html/motion/hotel/
2http://vasc.ri.cmu.edu//idb/html/motion/house/
3http://www.robots.ox.ac.uk/~vgg/data/data-aff.html
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pairwise correspondences, we extract SIFT descriptors [81] and use SIFT matching.

Dataset MatchDPS MatchDGD MatchALS MatchLift Spectral Input

Hotel101 0.865 0.900 0.933 0.747 0.693 0.726
House111 0.954 0.942 0.960 0.822 0.824 0.793
Hotel51 0.961 0.950 0.906 0.929 0.843 0.852
House56 1 0.993 0.994 0.986 0.970 0.913
Wall - 0.505 0.543 0.558 0.467 0.519
UBC - 0.864 0.873 0.688 0.747 0.837
Bikes - 0.859 0.862 0.677 0.706 0.836
Leuven - 0.868 0.853 0.789 0.712 0.827
Trees - 0.663 0.688 0.718 0.541 0.648
Graffiti - 0.443 0.465 0.464 0.375 0.456
Bark - 0.389 0.361 0.420 0.342 0.376

Table 4.1: Comparison of the competing methods on the CMU and on Affine Covariant
Regions datasets. We report the F-score for each method.

Input Matches Optimized Matches

Figure 4.2: Qualitative results on the Affine Covariant Regions datasets obtained by
MatchDGD. Blue and yellow lines correspond to inliers and outliers, respectively.
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Intraclass semantic keypoint matching. We use the WILLOW Object Class dataset

[24] which provides images of five object classes (Car, Face, Motorbike, Bottles, Duck) as

well as annotated keypoints (10) corresponding to several discriminative parts for each class.

Each class contains at least 40 images with different instances. Our goal is to find the cor-

respondences of keypoints between images in the same class. The main difficulty in this

dataset arises from the large variety of object appearance, which makes traditional geomet-

ric descriptors like SIFT inapplicable. To make use of high-level semantic and structural

information, we use the hypercolumns [44] extracted from AlexNet [66] (pretrained on Im-

ageNet [30]) as the keypoint descriptors, and then run graph matching [25] for each pair of

images to obtain the initial pairwise correspondences.

Dataset MatchDPS MatchDGD MatchALS MatchLift Spectral Input

Car 0.965 0.941 0.931 0.961 0.914 0.767
Duck 0.797 0.790 0.767 0.805 0.793 0.603
Bottles 0.967 0.967 0.970 0.970 0.976 0.885

Motorbike 0.955 0.950 0.931 0.955 0.950 0.716
Face 1 1 1 1 1 0.998

Table 4.2: Comparison of the competing methods on the WILLOW Object Class datasets.
We report the F-score for each method. All of the competing methods have similar per-
formance on these datasets and significantly improve the accuracy of the input pairwise
correspondences. This evaluation demonstrates the effectiveness of multiway matching in
the presence of sufficient number of images in a dataset.

4.5 Conclusions

In this chapter, we proposed a distributed optimization approach to consistent multiway

matching. We rigorously analyzed its convergence properties and provided experimental

evidence supporting that the proposed approach has performance comparable with the state

of the art centralized approaches.
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Input Matches Optimized Matches Input Matches Optimized Matches

Figure 4.3: Qualitative results on the WILLOW Object Class dataset obtained by the
proposed method MatchDGD. Blue and yellow lines correspond to inliers and outliers, re-
spectively.

Input Matches Optimized Matches Input Matches Optimized Matches

Figure 4.4: Qualitative results on the WILLOW Object Class dataset obtained by the
proposed method MatchDPS. Blue and yellow lines correspond to inliers and outliers, re-
spectively.
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Chapter 5

Distributed eigenvector computation

5.1 Introduction

In this chapter, we propose a fully decentralized method for computing the k smallest (or

largest) eigenvalues and eigenvectors of a matrix representing a graph using ideas from

dynamical systems theory. The idea of using dynamical systems to perform matrix decom-

positions is not new. In his seminal paper, Brockett [19] posed the matrix diagonalization

problem as a gradient flow on the orthogonal group. Our work can be viewed as a general-

ization of Brockett’s work to the distributed case. In particular, we propose a distributed

dynamical system for computing the invariant subspaces of a matrix with the sparsity pat-

tern of a communication graph.

In contrast to the approaches based on the Orthogonal Iteration, the orthogonality con-

straints that must be satisfied among the eigenvectors of a symmetric matrix are asymp-

totically satisfied by the dynamical system herein proposed. Thus, the main computational

burden of the Decentralized Orthogonal Iteration, namely, the orthonormalization step, is

not present in our approach.
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5.2 Problem statement

In this section, we formally define the problems we deal with in this work. In a nutshell,

given a matrix that is distributed across a network, we address the problem of distributedly

estimating both the k ≥ 1 smallest eigenvalues and the associated eigenvectors. First, we

give a more precise definition for the case k = 1 and then, for the case k > 1.

Problem Statement 5.2.1 (Distributed computation of a single eigenvector). We are

given a network of n agents whose interactions are captured by an undirected and connected

graph G = (V, E) along with a symmetric matrix A ∈ Rn×n that is distributed across G and

has eigendecomposition given by

A =

n∑
i=1

λiviv
T
i , (5.1)

with

λmin(A) = λ1 < λ2 < · · · < λn = λmax(A).

Let x(t) = [x1(t) · · ·xn(t)]T ∈ Rn, where each component xi is maintained by agent i, denote

the collective estimate of the eigenvector v1. Our goal is to design a local update rule so

that all agents asymptotically estimate the smallest eigenvalue λ1 and x(t) asymptotically

converges to v1 (up to a sign flip), that is,

lim
t→∞

x(t) = ±v1. (5.2)

Next, we give a precise definition for the problem of distributedly computing k > 1 smallest

eigenvalues and the associated eigenvectors.

Problem Statement 5.2.2 (Distributed computation of k smallest eigenvectors). We are

given a network of n agents whose interactions are captured by a connected and undirected

graph G = (V, E) along with a symmetric matrix A ∈ Rm×m that is distributed across G and

has eigendecomposition given by

A =
m∑
i=1

λiviv
T
i , (5.3)
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with

λmin(A) = λ1 < λ2 < · · · < λm = λmax(A).

Let X(t) = [X1(t)T · · ·Xn(t)T ]T ∈ Rm×k, where each Xi ∈ Rmi×k is maintained by agent i,

m =
∑n

i=1mi and k > 1 is the number of eigenvalues and associated eigenvectors we want to

compute. Our goal is to design a local update rule so that all agents asymptotically estimate

{λi}ki=1 and X(t) asymptotically converges to the associated eigenvectors (up to a sign flip),

that is,

lim
t→∞

X(t) = [±v1,±v2, . . . ,±vk]. (5.4)

The first problem is addressed in Section 5.3 while the second problem is addressed in Section

5.4.

5.3 Single eigenvector computation

In this section, we address the problem of distributedly computing the smallest eigenvalue

and the associated eigenvector of a given matrix A ∈ Rn×n that is distributed across a

network. Specifically, we have a network G = (V, E) with |V| = n agents. We denote by

x(t) = [x1(t) · · ·xn(t)]T ∈ Rn the collective estimate of the eigenvector associated with the

smallest eigenvalue of the given matrix at time t ≥ 0, with each agent i maintaining only

the ith component of x, namely xi.

The main difficulty of the problem at hand is the decentralization of the computations,

meaning that each agent should use information only from its neighbors. However, the

unit-norm constraint on the estimated eigenvector is global, in the sense that it involves

information from the entire group of agents. To achieve decentralization of the estimation

process, we propose that all agents track two collective time-varying quantities, namely

1 − x(t)Tx(t) and x(t)Ax(t), by an approach inspired by dynamic consensus [121]. We
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observe that these two quantities can be written as the average of local quantities as follows:

1− x(t)Tx(t) =
1

n

n∑
i=1

(1− nxi(t)2), (5.5)

x(t)TAx(t) =
1

n

n∑
i=1

nxi(t)a
T
i x(t), (5.6)

where aTi denotes the ith row of A. Note that we have assumed that the number n of agents

is known to every agent. Let zi(t) ∈ R denote the estimate of 1 − x(t)Tx(t) by agent i

and wi(t) ∈ R denote the estimate of x(t)TAx(t) by agent i. Based on the aforementioned

observation and inspired by dynamics consensus estimators [121], we propose the following

dynamics for the two sets of estimators {zi(t)}ni=1 and {wi(t)}ni=1:

żi =
∑
j∈Ni

(zj − zi)− 2nxiẋi, (5.7)

ẇi =
∑
j∈Ni

(wj − wi) + 2n(aTi x)ẋi, (5.8)

with initialization given by

zi(0) = 1− nxi(0)2, (5.9)

wi(0) = nxi(0)(aTi x), (5.10)

for all i = 1, 2, . . . , n. Intuitively, the dynamics consist of two terms: a consensus term that

averages estimates by adjacent agents and a term that compensates for the time-varying

nature of x(t). The choice for the dynamics of {zi(t)}ni=1 and {wi(t)}ni=1 will become more

clear in view of the following lemma which states that the collective averages of the local

estimates {zi(t)}ni=1 and {wi(t)}ni=1 are correct for all times t ≥ 0.

Lemma 5.3.1. Assume that x(t) exists for all t ≥ 0. Then, the estimators {zi}ni=1 and

{wi}ni=1 with dynamics given by eqs. (5.7) and (5.8) and initial conditions as in eqs. (5.9)
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and (5.10) satisfy

1

n

n∑
i=1

zi(t) = 1− x(t)Tx(t), (5.11)

1

n

n∑
i=1

wi(t) = x(t)TAx(t), (5.12)

for all t ≥ 0.

The proof of the last lemma is straightforward and therefore, omitted.

It remains to determine the dynamics of x(t). We propose the following dynamics for each

component xi(t) of the collective estimate x(t)

ẋi = (zi + αwi)xi − (β(lTi w) + α(1 + zi))(a
T
i x), (5.13)

for all i = 1, 2, . . . , n, where α, β are positive scalars whose range will be determined shortly

and lTi is the ith row of L(G). The choice of the dynamics for the collective estimate x(t) of

v1 may seem counter-intuitive at first sight. However, these dynamics stem from a properly

chosen quadratic potential function. More details are included in the proof of Theorem

5.3.4. Next, we include an interpretation of the proposed dynamics.

Remark 5.3.2 (Connection with the gradient flow of the Rayleigh quotient on the unit

sphere). Consider the dynamics of x(t) as in (5.13) with initial condition x(0) having unit

Euclidean norm. Furthermore, let z1(t) = . . . = zn(t) = 1 − x(t)Tx(t) and w1(t) = . . . =

wn(t) = x(t)TAx(t) for all t ≥ 0, that is all agents have access to the values of 1−x(t)Tx(t)

and x(t)TAx(t). Then, the proposed dynamics of the collective estimate x(t) reduce to the

gradient flow of the Rayleigh quotient xTAx/xTx on the unit sphere of Rn [3], i.e.

ẋ = −αPxAx (5.14)

where Px = I − xxT .
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Next, we analyze the convergence properties of the proposed dynamical system. As a first

step towards this direction, we compute its set of equilibria.

Lemma 5.3.3. Let λi denote the ith eigenvalue of A and vi denote the associated unit-norm

eigenvector. Moreover, let α > 0 such that

I − 2αA � 0. (5.15)

Then, the set of equilibria of the dynamics given in eqs. (5.7), (5.8) and (5.13), which we

denote by S1, is as follows:

S1 = {(0,1,0), (±v1,0, λ11), . . . , (±vn,0, λn1)}. (5.16)

Intuitively, the proposed dynamical system has 2n + 1 isolated equilibria, 2n − 1 of which

are undesirable, namely,

Su1 = {(0,1,0), (±v2,0, λ11), . . . , (±vn,0, λn1)}, (5.17)

and two are desirable, namely

Sd1 = {(±v1,0, λ11)}. (5.18)

An illustration of the equilibria for the case n = 2 is presented in Figure 5.1.

Next, we present the first main result of this work in the following theorem regarding the

convergence of the proposed dynamical system.

Theorem 5.3.4 (Almost-global convergence). Let λi denote the ith eigenvalue of A, with

λ1 < λ2 < · · · < λn, and vi denote the associated unit-norm eigenvector. Then, given α > 0

satisfying (5.15) and β satisfying

β > max{1, (n/4) diam(G)}α2, (5.19)
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we have that:

(i) The protocol in eqs. (5.7), (5.8) and (5.13) with initial conditions {zi(0), wi(0)}ni=1 as

in eqs. (5.9) and (5.10) asymptotically converges to an equilibrium point.

(ii) All undesirable equilibria are unstable.

(iii) None of the undesirable equilibria is attractive.

Sketch of Proof: We use the function defined by

φ1(x, z, w) =
1

2
zT z + αzTw +

β

2
wTL(G)w + αnxTAx. (5.20)

Intuitively, the term zT z penalizes deviations from the unit sphere, the term wTL(G)w

penalizes deviations in the estimates of the value of the collective quantity xTAx among

adjacent agents and the term xTAx is the Rayleigh quotient when x has norm one. Next,

we show that φ̇1 ≤ 0 along the trajectories of the system and that φ̇1(x, z, w) = 0 if and only

if (x, z, w) is an equilibrium. Next, we show that the trajectories cannot escape to infinity

while φ1 is nonincreasing and we conclude that the trajectories of the system converge to

an equilibrium. Finally, we prove that that all undesirable equilibria, that is all equilibria

except for (±v1,0, λ11), are unstable and non-attractive. A detailed proof of Theorem 5.3.4

is included in Appendix D.2. �

Remark 5.3.5. In practice, the presence of any numerical perturbation (e.g. as in the proof

of Theorem 5.3.4), together with Theorem 5.3.4, implies that the proposed dynamical system

eventually leaves any neighborhood of an unstable equilibrium, and converges to one of the

two desired equilibria.
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Figure 5.1: Desirable equilibria in green and undesirable equilibria in red for the toy case
n = 2.

5.4 Mupltiple eigenvector computation

In this section, we address the problem of distributedly computing the k smallest eigenvalues

and the associated eigenvectors of a given matrix A ∈ Rm×m that is distributed across a

network. Specifically, we have a network G = (V, E) with |V| = n agents and let X(t) =

[X1(t)T · · ·Xn(t)T ]T ∈ Rm×k be a collective quantity whose ith block-component Xi ∈

Rmi×m is maintained by agent i.

We propose that all agents track two collective time-varying quantities, namely Ik−X(t)TX(t)

and X(t)TAX(t). We propose that each agent i maintains an estimate Zi(t) ∈ Rk×k of

I − X(t)TX(t) and a local estimate Wi(t) ∈ Rk×k of X(t)TAX(t). As before, we observe

that these two global quantities can be written as the average of local quantities as follows:

I −X(t)TX(t) =
1

n

n∑
i=1

(I − nXi(t)
TXi(t)), (5.21)

X(t)TAX(t) =
1

n

n∑
i=1

nXi(t)A
T
i X(t), (5.22)

where ATi denotes the ith block-row of A. Based on this observation, we propose dynamics
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for {Zi(t)}ni=1 and {Wi(t)}ni=1, see (5.24) and (5.25), consisting of two terms: a consensus

term and a term that compensates for the time-varying nature of X(t).

We propose the following dynamical system for solving the problem at hand:

Ẋi = Xi(Zi + αWi)−ATi X(α(Zi + Ik) + βLTi W ), (5.23)

Żi =
∑
j∈Ni

(Zj − Zi)− n(XT
i Ẋi + ẊT

i Xi), (5.24)

Ẇi =
∑
j∈Ni

(Wj −Wi) + n(ẊT
i A

T
i X +XTAi, Ẋi), (5.25)

where LTi = lTi ⊗ Ik. The local estimates {Zi}ni=1, {Wi}ni=1 are initialized as follows:

Zi(0) = Ik −Xi(0)TXi(0), (5.26)

Wi(0) = (n/2)(Xi(0)TATi X(0) +X(0)TAiXi(0)), (5.27)

for all i = 1, 2, . . . , n.

Next, we analyze the convergence of the proposed dynamical system. The first result con-

cerns the estimators {Zi(t)}ni=1 and {Wi(t)}ni=1. Specifically, the collective averages of the

local estimates {Zi(t)}ni=1 and {Wi(t)}ni=1 are correct for all times. The proof is straightfor-

ward and therefore, omitted.

Lemma 5.4.1. The local quantities {Zi}ni=1 and {Wi}ni=1 with dynamics given by eqs. (5.24)

and (5.25) and initial conditions as in eqs. (5.26) and (5.27) satisfy

1

n

n∑
i=1

Zi(t) = Ik −X(t)TX(t), (5.28)

1

n

n∑
i=1

Wi(t) = X(t)TAX(t), (5.29)

for all t ≥ 0.

Next, we compute the equilibria of the proposed dynamical system.
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Lemma 5.4.2. Let α, β > 0 satisfying eqs. (5.15) and (5.19). Then, a triplet (X,Z,W ) is

an equilibrium for the dynamical given in eqs. (5.23) to (5.25) if and only if

Zi = Ik −XTX, and Wi = XTAX, ∀i = 1, 2, . . . , n, (5.30)

and X can be written as

X = Um×rQ
T
k×r, (5.31)

for some k × r matrix Q satisfying QTQ = Ir and for some m × r matrix U that satisfies

UTU = Ir and

U(UTAU) = AU, (5.32)

that is span(U) must be invariant subspace of A.

The proof of the above lemma can be found in Appendix D.3.

Remark 5.4.3 (Non-isolated equilibria). In contrast to the k = 1 case, the equilibria for

the proposed dynamical system are not isolated. For instance, if X = Um×rQ
T
k×r for some

k × r matrix Q satisfying QTQ = Ir and for some m× r matrix U that satisfies UTU = Ir

and (5.32), then XR where R is some r× r orthogonal matrix also satisfies the assumptions

of Lemma 5.4.2. Since R can be chosen to be arbitrarily close to the identity matrix, its

follows that there is a connected set of equilibria containing X.

The sets of equilibria can be divided into two categories, namely desirable and undesirable.

The desirable sets of equilibria correspond to

X =
[
±vπ(1) ±vπ(2) . . . ±vπ(k)

]
Q (5.33)

for some orthogonal k × k matrix Q, where π is a permutation of [k] and v1, . . . , vk are the

unit-norm eigenvectors of A associated with the k smallest eigenvalues. The undesirable

sets are simply sets that are not desirable.

The second and most important result of this work is presented in the following theorem.
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Theorem 5.4.4 (Almost-global convergence). Consider the dynamical system in eqs. (5.23)

to (5.25) with initial conditions {Zi(0),Wi(0)}ni=1 as in eqs. (5.26) and (5.27) and α, β

satisfying eqs. (5.15) and (5.19). Then,

(i) The trajectories of the system asymptotically approach some set of equilibria.

(ii) All undesirable sets of equilibria are (uniformly) unstable.

(iii) All undesirable sets of equilibria are (uniformly) non-attractive.

Sketch of proof. Generalizing the approach for the case k = 1, we use the potential function

φ2 defined by

φ2(X,Z,W ) =
1

2
tr(ZTZ) +

β

2
tr(W T (L(G)⊗ Ik)W ) +α tr(ZTW ) +αn tr(XTAX), (5.34)

Intuitively, the term tr(ZTZ) promotes orthogonality for the columns of X, the term

tr(W T (L(G) ⊗ Ik)W ) penalizes deviations in the estimates of the value of the collective

quantity XTAX among adjacent agents and the term tr(XTAX) is equal to generalized

Rayleigh quotient tr(XTAX(XTX)−1) when X has orthogonal columns. Next, we show

that φ̇2 ≤ 0 along the trajectories of the system and that the trajectories of the system

cannot escape to infinity while φ̇2 ≤ 0. We explicitly find all points (X,Z,W ) such that

φ̇2(X,Z,W ) = 0 and show that the dynamical system at hand asymptotically approaches

some set of equilibria. In addition, we show that all undesirable sets of equilibria are both

unstable and non-attractive. A detailed proof of Theorem 5.4.4 is included in Appendix

D.4.

Remark 5.4.5. In practice, the presence of any numerical perturbation, e.g. as in the proof

of Theorem 5.4.4, together with Theorem 5.4.4, imply that the proposed dynamical system

eventually leaves any neighborhood of an undesirable set of equilibria, and asymptotically

converges to a desired set of equilibria. Let Wi(t) = Qi(t)∆i(t)Qi(t)
T be an eigendecompo-

sition of Wi(t) and define Yi(t)
.
= Xi(t)Qi(t). Then, up to a reordering of columns, we have
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that for all i = 1, 2, . . . , n

lim
t→∞

[Y1(t)T · · ·Yn(t)T ]T =
[
±v1 ±v2 . . . ±vk

]
, (5.35)

and

lim
t→∞

∆i(t) = diag(λ1, λ2, . . . , λk). (5.36)

5.5 Simulations

5.5.1 Smallest eigenvalue of an adjacency matrix

As a first experiment, we compute the minimum eigenvalue and the associated eigenvector

of the adjacency matrix of the six-regular graph of Fig. 5.2. The smallest eigenvalue and

the associated unit-norm eigenvector of an r-regular graph are equal to

λ1 = −r, v1 = ±(1/
√
n)1. (5.37)

We used n = 20 vertices and r = 6. Hence, the minimum eigenvalue λ1 is equal to −6

and the associated eigenvector is approximately equal to v1 ± 0.2236 · 1. All {xi(0)}ni=1

are randomly generated by sampling a normal distribution with zero mean and standard

deviation 1/n. Results are presented in Fig. 5.3(a)-(c). In all experiments, we used the 4th

order Runge-Kutta method with step-size h = 0.01.
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Figure 5.2: Six-regular graph used in the simulations.

5.5.2 Diagonalizing an entire graph Laplacian

As a second experiment, we estimate all eigenvalues and the associated eigenvectors of the

Laplacian matrix of a network of n = 10 vertices whose adjacency matrix A(G) is given by

A(G) =



0 0 1 0 0 0 1 0 1 1

0 0 0 0 1 0 0 1 0 1

1 0 0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0 1 0

0 1 1 0 0 0 0 0 1 0

0 0 1 0 0 0 0 1 0 0

1 0 1 0 0 0 0 0 1 1

0 1 1 0 0 1 0 0 1 0

1 0 0 1 1 0 1 1 0 0

1 1 0 0 0 0 1 0 0 0



. (5.38)

Representative results are presented in Fig. 5.3(d)-(f). All eigenvalues of the Laplacian are

accurately estimated as can be seen in Fig. 5.3(d). Each column of {Xi(0)}ni=1 is randomly

generated as in the first example.
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Figure 5.3: Top row: evolution of the agents’ states over time for the first experiment. It
can be seen that x(t) → −(1/

√
n)1, where 1/

√
n ≈ 0.2236, z(t) → 0 and w(t) → λ1(A)1

where λ1(A) = −r = −6. Bottom row: (d) mean estimates of λi(L(G))’s (solid) vs actual
values (dashed) in the second experiment. (e)-(f) estimates of λ2(L(G)) and λ10(L(G)) for
each agent over time. Note that λ2(L(G)) = 0.8526, λ10(L(G)) = 7.3018, λ̂ij denotes the
estimate of λj(L(G)) by agent i and λ̂j denotes the average estimate over the network of the
same quantity.
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The first 5 eigenvectors of the graph Laplacian as computed by Matlab’s routine eig are

V1:5 =



−0.3162 0.0705 0.2490 0.3669 −0.1737
−0.3162 0.1651 0.1694 −0.5694 0.4429
−0.3162 0.1426 −0.1228 0.0968 −0.2584
−0.3162 −0.9076 −0.1143 −0.0139 0.1553
−0.3162 0.0810 0.0681 −0.5431 −0.5153
−0.3162 0.2384 −0.7421 0.2153 0.2057
−0.3162 0.0705 0.2490 0.3669 −0.1737
−0.3162 0.1310 −0.2548 −0.1311 0.0915
−0.3162 −0.1338 0.0561 0.0161 −0.2814
−0.3162 0.1425 0.4423 0.1956 0.5072



, (5.39)

and the fist 5 eigenvectors of graph Laplacian as computed by the proposed decentralized

method are almost identical (up to a sign flip):

V̂1:5 =



−0.3162 0.0705 0.2490 −0.3669 −0.1737
−0.3162 0.1651 0.1694 0.5694 0.4429
−0.3162 0.1426 −0.1228 −0.0968 −0.2584
−0.3162 −0.9075 −0.1143 0.0139 0.1553
−0.3162 0.0810 0.0681 0.5431 −0.5153
−0.3162 0.2384 −0.7421 −0.2153 0.2057
−0.3162 0.0705 0.2490 −0.3669 −0.1737
−0.3162 0.1310 −0.2548 0.1311 0.0915
−0.3162 −0.1337 0.0562 −0.0161 −0.2815
−0.3162 0.1425 0.4423 −0.1956 0.5072



. (5.40)

5.6 Application in permutation synchronization

In this section, we show how to use the approach of this section to solve the spectral relax-

ation of the permutation synchronization problem in a decentralized fashion.

Recall from Chapter 3, that permutation synchronization can be cast as the following com-

binatorial optimization problem:

maximize
Π1,...,Πn∈Sm

∑
{i,j}∈E

tr(ΠT
i Π̃ijΠj) (5.41)

Unfortunately, problem (3.5) is computationally intractable. To address the computational
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intractability of problem (3.5), we, next, propose a spectral relaxation. In contrast to the

spectral relaxation of [101], we do not assume that all pairwise association matrices Π̃ij are

available.

The following lemma is crucial for deriving the spectral relaxation of problem (3.5).

Lemma 5.6.1. Let ∆
.
= diag(Π̃1). Assume that the pairwise associations {Π̃ij}{i,j}∈E are

consistent and the sensor graph G is connected. Then, the matrix ∆−1Π̃ has exactly m

leading eigenvalues equal to 1, where m is the size of the universe of features. Furthermore,

there exist permutation matrices Π1,Π2, . . . ,Πn ∈ Pm, unique up to a global permutation,

satisfying

Π̃Π = ∆Π, (5.42)

where Π = [ΠT
1 ΠT

2 · · · ΠT
n ]T .

For a proof of Lemma 5.6.1 we refer the reader to [7].

An approximate solution to problem (5.41), under relaxed orthonormality and nonnegativity

constraints, is determined by the m leading eigenvectors of ∆−1Π̃ [7]. Since, ∆−1Π̃ is not,

in general, a symmetric matrix, the approach of this chapter is not directly applicable.

Nevertheless, ∆−1Π̃ is similar to the symmetric matrix ∆−1/2Π̃∆−1/2. Let V ΛV T be an

eigendecomposition of ∆−1/2Π̃∆−1/2, where V is an orthogonal matrix and Λ a diagonal.

Then, let

∆−1/2V =


Q1

...

Qn

 .
= Q, (5.43)

for some m ×m matrices Q1, Q2, . . . , Qn. In the noiseless case, span(Π) and span(Q) are

equal, and thus, Π = QG−1 for some invertible matrix G. Without loss of generality, we

can assume that Π1 = Im and thus, G must be equal to Q1. Based on this observation, the

last step of the proposed approach consists of each agent i computing the approximately
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optimal Π?
i by

Π?
i = ProjPm(QiQ

−1
1 ), (5.44)

where ProjPm denotes the projection onto set of m×m permutation matrices which can be

computed using the Hungarian algorithm [67]. Finally, cycle consistent pairwise associations

can be computed by

Π?
ij = Π?

iΠ
?T
j . (5.45)

Overall, we propose the following four-step approach for solving the spectral relaxation of

permutation synchronization in a decentralized fashion:

1. All agents collectively compute them leading eigenvectors V = [v1 · · · vm] of ∆−1/2Π̃∆−1/2

using the approach of Section 5.4.

2. Each agent i computes Qi as defined in (5.43).

3. Agent 1 transmits Q1 to the entire group. This operation takes diam(G) time steps.

4. Each agent i computes Π?
i as in (5.44) and pairs of agents compute their corresponding

associations by (5.45).

Finally, we evaluate the propose spectral relaxation. We consider three graph topologies,

namely, a six-regular, a ten-regular graph and a complete graph, all of which have n =

20 vertices. We used m = 30 as the number of features per collection. We vary the

percentage of outliers of the initial pairwise associations {π̃ij}{i,j}∈E from 0% to 90%. Results

are presented in Fig. 5.4. We observe that, not surprisingly, increasing the connectivity

of a graph, significantly improves the accuracy of the spectral relaxation for permutation

synchronization. Furthermore, given enough noisy pairwise associations, exact recovery of

the true pairwise associations is achieved for a significant percentage of outliers, namely

about 60%.
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Figure 5.4: Accuracy of pairwise associations after permutation synchronization versus initial
percentage of outliers for a six-regular, a ten-regular and a complete graph with 20 vertices.
We observe that in the six-regular graph case, exact recovery of the true pairwise associations
can be achieved for up to 20% of outliers, whereas this percentage increases to 40% for the
case of the 10-regular graph and to 60% for the case of a complete graph.

5.7 Conclusions

In this chapter, we proposed a dynamical systems approach to distributedly compute any

number of extreme eigenvalues and associated eigenvectors of a matrix that is distributed

across a network with almost-global convergence guarantees. In contrast to approaches

based on Orthogonal Iteration, orthogonality constraints are only asymptotically satisfied

by the dynamical system herein proposed. Thus, the main computational burden of the

Decentralized Orthogonal Iteration, namely, the orthonormalization step, is not present in

our approach. In addition, we applied the proposed method to permutation synchronization,

specifically to decentralize the spectral relaxation of the permutation synchronization.
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Chapter 6

Distributed cooperative state

estimation for mobile agents

6.1 Introduction

In this chapter, we first propose a method for fusion of two random vectors with unknown

cross-correlations which is less conservative than the widely used Covariance Intersection

(CI) while taking cross-correlations into account. Then, we extend our formulation for the

case of a linear measurement model. Finally, we present numerical examples and simulations,

in a distributed cooperative localization scenario, which demonstrate the validity of the

proposed approach and that the proposed approach significantly outperforms Covariance

Intersection, while taking correlations into account.

This chapter is structured as follows: in Section 6.2.1 we include definitions of consistency

and related notions and we introduce the problem at hand. Our game-theoretic approach

to fusing two random variables with unknown cross-correlations is the topic of Section 6.2.2

and it is generalized for arbitrary linear measurement models in Section 6.3. In Section

6.4 we include details on the implemented numerical algorithm. Numerical examples and
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simulation results are presented in Sections 6.5 and 6.6 respectively.

6.2 Fusion under unknown correlations

6.2.1 Problem statement

In this subsection, we formalize the problem of fusing two estimates or a random vector

whose correlations are unknown.

First, we need a precise definition of consistency. Let � denote the generalized matrix

inequality of the cone of positive semidefinite matrices. Moreover, let E[X] and Cov (X)

denote, respectively, the expectation and covariance of a random vector X. Then, the notion

of consistency is defined as follows.

Definition 6.2.1 (Consistency [58]). Let z be a random vector with expectation E[z] = z.

An estimate z̃ of z is another random vector. The associated error covariance is denoted by

Σ̃zz
.
= Cov (z̃ − z). The pair (z̃,Σzz) is consistent if

E[z̃] = z, and Σzz � Σ̃zz. (6.1)

Intuitively, consistency of the pair (z̃,Σzz) is satisfied if z̃ is an unbiased estimator of z and

Σzz is a conservative estimate of the actual error covariance Σ̃zz.

Next, we precisely define the problem of fusing two random vector under unknown correla-

tions.

Problem Statement 6.2.2 (Consistent fusion). Assume we are given two consistent es-

timates (x̃,Σxx), (ỹ,Σyy) of z, where Σxx,Σyy are known upper bounds on the true error

covariances. Furthermore, we assume that the cross-covariance between x̃ and ỹ is unknown.

The problem at hand consists of fusing the two consistent estimates (x̃,Σxx), (ỹ,Σyy) into a
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single consistent estimate (z̃,Σzz), where z̃ is of the form

z̃ = Wxx̃+Wyỹ, (6.2)

subject to Wx +Wy = I (in order for the mean to be preserved).

The most widely used solution of the above problem is given by the Covariance Intersection

algorithm [58]. Given upper bounds Σxx � Σ̃xx, Σyy � Σ̃yy the Covariance Intersection

equations read

z̃ = Σzz

{
ωΣ−1

xx x̃+ (1− ω)Σ−1
yy ỹ
}
,

Σ−1
zz = ωΣ−1

xx + (1− ω)Σ−1
yy ,

(6.3)

where ω ∈ [0, 1]. It is not hard to show that

Σzz

{
ωΣ−1

xx + (1− ω)Σ−1
yy

}
= I, (6.4)

which implies E[z̃] = z. Moreover, it is easy to check that (z̃,Σzz) is consistent. The

above can be easily generalized for the case of more than two random variables, for partial

measurements and for the linear measurement model we consider in Section 6.3. Usually, ω

is chosen such that either tr(Σzz) or log det(Σ−1
zz ) is minimized.

Next, we introduce a notion related to consistency but with relaxed requirements. Let Sn+

denote the positive semidefinite cone, that is the set of n×n positive semidefinite matrices.

A function f : Sn+ → R is Sn+-nondecreasing [18] if

X � Y ⇒ f(X) ≥ f(Y ) (6.5)

for any X,Y ∈ Sn+. An example of such a function is f(X) = tr(X). Now, we are ready to

introduce the notion of consistency with respect to a Sn+-nondecreasing function.

Definition 6.2.3 (f -Consistency). Let f : Sn+ → R be a nondecreasing function (with respect
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to Sn+) satisfying f(0) = 0. Let z be a random vector with expectation E[z] = z and z̃ be

an estimate of z with associated error covariance Σ̃zz. The pair (z̃,Σzz) is f -consistent if

E[z̃] = z and f(Σzz) ≥ f(Σ̃zz).

Remark 6.2.4. Consistency implies f -consistency. However, the converse in not necessar-

ily true.

Based on the preceding definition of f -consistency, we next present a relaxed version of the

consistent fusion problem.

Problem Statement 6.2.5 (Trace-consistent fusion). Given two consistent estimates (x̃,Σxx),

(ỹ,Σyy) of z, where Σxx,Σyy are known upper bounds on the true error variances. The

problem at hand consists of fusing the two consistent estimates (x̃,Σxx), (ỹ,Σyy) in a

single trace-consistent estimate (z̃,Σzz), where z̃ is a linear combination of x̃ and ỹ and

tr(Σzz) ≥ tr(Σ̃zz).

Next, we introduce a minimax formulation for the problem of trace-consistent fusion. Re-

laxing the consistency constraint to the trace-consistency constraint enables us to estimate

the weighting matrices Wx,Wy, in full generality, according to some optimality criterion,

which is none other than the minimax of the trace of the covariance matrix or equivalently

the mean-squared error of the fused estimate.

6.2.2 A minimax formulation to trace-consistent fusion

The goal of this subsection is the derivation of our minimax approach that tackles the

problem of trace-consistent fusion as defined earlier.

First, we need some basic notions from game theory. A two-player game on Rm × Rn is

defined by a pay-off function f : Rm × Rn → R. Intuitively, the first player makes a move

u ∈ Rm then, the second player makes a move v ∈ Rm and receives payment from the first

player equal to f(u, v). The goal of the first player is to minimize its payment and the goal

of the second player is to maximize the received payment. The game is convex-concave if
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the pay-off function f(u, v) is convex in u for fixed v and concave in v for fixed u. For a

in-depth review of convex-concave games in the context of convex optimization, we refer the

reader to [41].

Back to the problem at hand, let z be a random vector with expectation E[z] = z. Assume

we have two estimates (x̃,Σxx), (ỹ,Σyy) of z where Σxx,Σyy are approximations to the true

error covariances Σ̃xx, Σ̃yy. Based on the preceding discussion of Section 6.2.1, the fused

estimate is of the form

z̃ = (I −K)x̃+Kỹ, (6.6)

and the associated error covariance Σ̃zz is given by

Σ̃zz =

[
I −K K

]Σ̃xx Σ̃xy

Σ̃T
xy Σ̃yy


I −KT

KT

 . (6.7)

However, Σ̃xx, Σ̃yy are not known. Therefore, we define

Σzz
.
=

[
I −K K

]Σxx Σxy

ΣT
xy Σyy


I −KT

KT

 . (6.8)

However, not all values of the cross-covariance Σxy result in a positive-semidefinite covariance

matrix. For this reason, we include the following Linear Matrix Inequality (LMI) constraint

on Σxy: Σxx Σxy

ΣT
xy Σyy

 � 0. (6.9)

Next, we present a lemma that is instrumental in showing that the trace of Σzz, as a function

of K and Σxy, is convex-concave.
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Lemma 6.2.6. Given Σxx,Σyy � 0, and Σxy satisfying (6.9) we have that

Σxx + Σyy − 2Σxy � 0. (6.10)

The proof of Lemma 6.2.6 is included in Appendix E.1.

Next, we state and prove that tr(Σzz), viewed as a function of K and Σxy, is convex-concave.

Proposition 6.2.7. We have that, for a fixed Σxy satisfying (6.9), tr(Σzz) is convex in K.

Moreover, for a fixed K, tr(Σzz) is linear, and thus concave, in Σxy with a convex domain

defined by (6.9). As a result, tr(Σzz) is a convex-concave function in (K,Σxy).

Proof. Let f̃(K)
.
= tr(Σzz) for a fixed Σxy satisfying (6.9). The Hessian of f̃ can be computed

by

Hess f̃(K)[U,U ] = tr(U(Σxx + Σyy − 2Σxy)U
T ) (6.11)

= uT (I ⊗ (Σxx + Σyy − 2Σxy))u, (6.12)

where u = vec(U). From Lemma 6.2.6 and from the properties of Kronecker product, it

follows that the Hessian of f̃ is positive semidefinite. Thus, for a fixed Σxy satisfying (6.9)

tr(Σzz) is convex in K. The remainder of the proof is straightforward.

We formulate the problem of finding the weighting matrix K as a convex-concave game:

the first player chooses K to minimize tr(Σzz) whereas the second player chooses Σxy to

maximize tr(Σzz). More specifically, let (K?,Σ?
xy) be the solution to the following minimax

optimization problem

minimize
K

sup
Σxy

tr(Σzz)

subject to

Σxx Σxy

ΣT
xy Σyy

 � 0.

(6.13)
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Then, the fused estimated and the associated error covariance are given by

z̃ = (I −K?)x̃+K?ỹ,

Σ?
zz =

[
I −K? K?

]Σxx Σ?
xy

Σ?T
xy Σyy


I −K?T

K?T

 . (6.14)

Naturally, we have the following lemma.

Lemma 6.2.8. If (x̃,Σxx) and (ỹ,Σyy) are consistent, then the pair (z̃,Σ?
zz) given by (6.14)

is trace-consistent.

The proof of Lemma 6.2.8 is a special case of the proof of Lemma 6.3.2, whose proof is

included in Appendix E.4.

The problem of numerically solving problem (6.13) is the topic of Section 6.4. The case

under consideration in this section can be viewed as a special case of Section 6.3.

Remark 6.2.9. The problem of maximizing tr(Σzz) over the cross-correlation Σxy is equiv-

alent to
maximize

R
2 tr(F (K)TR)

subject to RTR � I,
(6.15)

with

F (K) = Σ1/2
xx (K −KTK)Σ1/2

yy . (6.16)

The optimal solution of problem (6.15) (see Appendix E.2) is given by

R? = UV T , (6.17)

where UΣV T is a singular value decomposition (SVD) of F (K). It follows that

max
R:RTR�I

2 tr(F (K)TR) = 2‖F (K)‖?, (6.18)
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where ‖·‖? denotes the nuclear norm of a matrix. Problem (6.13) can be equivalently written

as an unconstrained minimization problem with respect to K with objective:

f(K,Σ?
xy) = tr(K(Σxx + Σyy)K

T )− 2 tr(ΣxxK) + 2‖Σ1/2
xx (K −KTK)Σ1/2

yy ‖?. (6.19)

This observation suggests an algorithmic possibility for solving problem (6.13) by the sub-

gradient method as proposed by [153]. However, we have experimentally observed that the

proposed Newton method of Section 6.4 converges to the optimal solution of problem (6.13)

much faster than the subgradient method.

6.3 Minimax linear update

In this section, we explore the problem of fusing an estimate of a random variable with

another noisy partial estimate whose correlation is uknown. The problem of Section 6.2.2

can be viewed as a special case of the problem considered in this section.

We assume we have two random vectors x, y with expectations E[x] = x and E[y] = y.

We have some estimates x̃ and ỹ of x and y respectively with associated error covariances

Σ̃xx and Σ̃yy. As before, we assume that the true error covariances are only approximately

known. Let Σxx and Σyy denote these approximate values. We assume we have a linear

measurement model of the form:

z = Cx+Dy + η, (6.20)

where η is a zero-mean noise process with covariance Ση. We assume that the measurement

noise process η is independent of the estimates x̃ and ỹ.

As in the classic Kalman filter derivation, we propose an update step of the form

x̃+ = x̃+K(z − z̃), (6.21)
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where z̃ .
= Cx̃+Dỹ. The error of the update is given by

x̃+ − x = (I −KC)(x̃− x)−KD(ỹ − y) +Kη, (6.22)

and the associated error covariance, defined by Σ̃+
xx

.
= Cov (x̃+ − x), is given by

Σ̃+
xx =

[
I −KC −KD

]Σ̃xx Σ̃xy

Σ̃T
xy Σ̃yy


I − CTKT

−DTKT

+KΣηK
T . (6.23)

However, we assume that the true error covariances Σ̃xx and Σ̃yy are not known, in general.

Therefore, we need to define

Σ+
xx

.
=

[
I −KC −KD

]Σxx Σxy

ΣT
xy Σyy


I − CTKT

−DTKT

+KΣηK
T , (6.24)

where Σxy should satisfy (6.9) in order to be a valid cross-covariance.

Proposition 6.3.1. For a fixed Σxy satisfying (6.9), tr(Σ+
xx) is convex in K. For a fixed

K, tr(Σ+
xx) is linear, and thus concave, in Σxy with a convex domain defined by (6.9). As a

result, tr(Σ+
xx) is a convex-concave function of (K,Σxy).

By rewriting (6.9) using Schur complement, the minimax formulation we propose is as

follows:
minimize

K
sup
Σxy

tr(Σ+
xx)

subject to Σ−1/2
yy ΣT

xyΣ
−1
xxΣxyΣ

−1/2
yy − I � 0.

(6.25)

Let (K?,Σ?
xy) be the optimal solution of problem (6.25). Then, the fusion estimate x̃+ and
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the associated error covariance Σ+?
xx are given by:

x̃+ = (I −K?C)x̃−K?Dỹ

Σ+?
xx =

[
I −K?C −K?D

]Σxx Σ?
xy

Σ?T
xy Σyy


I − CTK?T

−DTK?T

+KΣηK
T .

(6.26)

Naturally, we have the following lemma whose proof is included in Appendix E.4.

Lemma 6.3.2. If (x̃,Σxx) and (ỹ,Σyy) are consistent, then the pair (x̃+,Σ+?
xx ) given by

(6.26) is trace-consistent.

Remark 6.3.3. Observe that for C = I, D = −I and Ση = 0, the problem at hand reduces

to the problem of the previous section.

6.4 Numerical solution with interior-point methods

In this section, we describe the numerical method we use to solve problem (6.25). We use

the barrier method with infeasible start Newton method [18] (see Algorithm 3). Intuitively,

a sequence of unconstrained minimization problems is solved, using the last point iteration

is the starting point for the next iteration.

It is more convenient to derive the Netwon method equations for X .
= KT instead of K.

Let f(X,Σxy)
.
= tr(Σ+

xx), where Σ+
xx as defined in (6.24). Define for t > 0, the cost function

ft(X,Q) by

ft(X,Q) = tf(X,Q) + log det(−f1(Q)), (6.27)

where f1(Q) is defined by

f1(Q) = Σ−1/2
yy QTΣ−1

xxQΣ−1/2
yy − I. (6.28)

Intuitively, 1
t ft approaches f as t→∞. Note that ft(X,Q) is still convex-concave for t > 0.
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The barrier method consists of solving a sequence of unconstrained minimax problems with

objective ft(X,Q) with a gradually increasing parameter t.

We use the infeasible start Newton method [18], outlined in Algorithm 3, to find the optimal

solution of the unconstrained problem:

minimize
X

maximize
Q

ft(X,Q). (6.29)

The optimality conditions for the unconstrained minimax problem with objective ft(X,Q),

for a fixed t > 0, are simply

gradX ft(X
?, Q?) = 0, gradQ ft(X

?, Q?) = 0, (6.30)

where explicit expressions for the gradients gradX ft and gradQ ft are included in Appendix

E.5 along with the linear equations for computing the Newton step (∆Xnt,∆Qnt) of the

infeasible start Newton method. Intuitively, at each step, the directions ∆Xnt,∆Qnt are

the solutions of the first order approximation

0 = R(X,Q) +DR(X,Q)[∆Xnt,∆Qnt], (6.31)

where R(X,Q) = grad ft(X,Q) is the optimality residual. Then, a backtracking line search

is performed on the norm of the residual along the Newton step direction.

Finally, the structure of the problem allows us to easily identify a strictly feasible initial

point (X0, Q0) where Q0 = 0 and X0 satisfies

(CΣxxC
T +DΣyyD

T + Ση)X
0 = CΣxx. (6.32)

For details on the convergence of the infeasible start Newton method and the barrier method

for convex-concave games, we refer the reader to [41, 18].

83



Algorithm 3 Barrier method with infeasible start Newton method.

given: starting points X0 as in (6.32) and Q0 = 0, tolerance ε, δ > 0, t = t0 > 0, µ > 1,
α ∈ (0, 1/2), β ∈ (0, 1).

Repeat
Repeat

1. Compute residual R(X,Q) = grad ft(X,Q) as in (E.18).
2. Compute Newton steps (∆Xnt,∆Qnt).
3. Backtracking line search on ‖R‖F .

s = 1.
(Xs, Qs) = (X,Q) + s(∆Xnt,∆Qnt).
While ‖R(Xs, Qs)‖F > (1− αs)‖R(X,Q)‖F

s = βs.
(Xs, Qs) = (X,Q) + s(∆Xnt,∆Qnt).

EndWhile
4. Update: (X,Q) = (X,Q) + s(∆Xnt,∆Qnt).

until ‖R(X,Q)‖F ≤ δ
Increase t by t = µt.

until 1/t < ε

6.5 Numerical examples

In this section, we present two numerical examples which shed light on the differences

between the Covariance Intersection (CI) and the proposed Robust Fusion (RF). First,

consider the example of fusing two random variables with means and covariances

x̃ = ỹ =

0

0

 , Σxx =

5 0

0 5

 , Σyy =

3 0

0 7

 . (6.33)

Let (z̃CI ,ΣCI) and (z̃RF ,ΣRF ) be the fused estimates and the corresponding error covari-

ances obtained from Covariance Intersection and Robust Fusion. We have that

z̃CI = z̃RF =

0

0

 , ΣCI =

3.79 0

0 5.79

 , ΣRF =

3 0

0 5

 , (6.34)

Although tr(ΣCI) is less than each of tr(Σxx) and tr(Σyy), we see that the produced upper

bound on the error covariance is very conservative
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Figure 6.1: Confidence ellipses: given a covariance matrix Σ we draw the set {x : xTΣ−1x =
1}. Initial confidence ellipse (black), Maximum likelihood Estimate (MLE) confidence el-
lipse (gray dashed) for various values of correlation, CI confidence ellipse (green) and RF
confidence ellipse (red). The confidence ellipses obtained from MLE lie in the intersection
of the two ellipsoids {x : xTΣ−1

xxx ≤ 1} and {x : xTΣ−1
yy x ≤ 1}. The RF confidence ellipse

lies in the intersection of the two ellipsoids as well. When correlation increases, the trace of
the covariance of MLE approaches the trace of ΣRF .

In the second example, we consider the case of partial measurements. More specifically,

using notation of Section 6.3, let

x̃ =

0

0

 , Σxx =

5 0

0 5

 , (6.35)

and C =

[
1 0

]
, z = z̃ = 0, Σyy = 1, D = 1 and Ση = 0. Both Covariance Intersection and

Robust Fusion yield z̃+ = 0 but

ΣCI =

3 0

0 6

 , ΣRF =

1 0

0 5

 . (6.36)

We observe that despite having a measurement of only the first coordinate, the error variance

of the second coordinate increased. The reason for this phenomenon is that the CI updates

the current estimate and the associated error covariance along a predefined direction only.
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Although tr(ΣCI) < tr(Σxx), the bound on the true error covariance estimated by Covariance

Intersection is very conservative.
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MLE

Figure 6.2: Illustration of the second numerical example of fusion under unknown corre-
lations. Initial confidence ellipse (black), Maximum likelihood Estimate (MLE) confidence
ellipse (gray dashed) for various values of correlation, CI confidence ellipse (green) and RF
confidence ellipse (red).

6.6 Application in decentralized cooperative localization

Finally, we consider the application of the proposed method in distributed cooperative local-

ization using relative position measurements. Given a group of mobile agents able to sense

each other, we propose that each agent maintains only its own state estimate and thus, the

cross-covariance between any two agents state estimates are not known. Despite this, the

approach of Section 6.3 can be employed to update the state estimates of the agents from

noisy pairwise measurements. This choice significantly simplifies the proposed cooperative

localization protocol and ensures its scalability to large groups of mobile agents.

We experiment with a group of n = 4 mobile agents on the plane with a communication

network topology as depicted in Fig. 6.3. If there is an edge from i to j, then agent i transmits

its current state estimate and the corresponding error covariance estimate to agent j which,

upon receipt, takes a measurement of the relative position and updates its own state estimate
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and associated error covariance estimate.

We assume that each agent i can be modeled as a unicycle, i.e. its dynamics are given by

ẋi = vi cos θi, (6.37)

ẏi = vi sin θi, (6.38)

θ̇i = ωi, (6.39)

where (xi, yi) ∈ R2 are the coordinates of the position of agent i, θi ∈ R denotes the

orientation of agent i and vi and ωi denote the corresponding velocity and angular velocity

of agent i. We assume that the inputs, namely vi and ωi contain linear additive normally

distributed noise. The discrete time analog of the dynamics given in (6.37), (6.38) and

(6.39), with time step T , are approximately given by

xi(t+ 1) = xi(t) + Tvi(t) cos θi(t), (6.40)

yi(t+ 1) = yi(t) + Tvi(t) sin θi(t), (6.41)

θi(t+ 1) = θi(t) + Tωi(t). (6.42)

We assume that the first agent is equipped with global position system (GPS), that is we

have a measurement of the form

y1(t) =

x1(t)

y1(t)

+ η1(t), (6.43)

where η1(t) ∼ N (0, R1(t)). Agent 1 performs a standard Kalman Filter update step for its

own state estimate after a GPS measurement.
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Figure 6.3: Communication network topology.

For each edge (i, j) we have a pairwise measurement of the form

yij(t) =

xi(t)− xj(t)
yi(t)− yj(t)

+ ηij(t), (6.44)

where ηij(t) ∼ N (0, Rij(t)). Each agent can update its state estimate by either ignoring

cross-correlations (Naive Fusion), by Covariance Intersection or by the proposed method of

Section 6.3, which we call Robust Fusion (RF).

The individual prediction step is the same as the Kalman Filter (KF) prediction step, that

is

x̃i(t+ 1|t) = f(x̃i(t|t), ui(t)) (6.45)

Σi(t+ 1|t) = Ai(t)Σi(t|t)Ai(t)T +Bi(t)Qi(t)Bi(t)
T , (6.46)

where x̃i(t + 1|t) denotes the estimate of agent i for its state at time t + 1 having received

measurements up to time t, Σi is the associated error covariance, ui(t) = (vi(t), ωi(t)), f

denotes the discrete-time dynamical model as defined in (6.40), (6.41) and (6.42), and

Ai(t) =


1 0 −Tvi(t) sin θ̃i(t|t)

0 1 Tvi(t) cos θ̃i(t|t)

0 0 1

 , Bi(t) =


T cos θ̃i(t|t) 0

T sin θ̃i(t|t) 0

0 T

 . (6.47)
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We evaluate three estimators, two decentralized and one centralized:

• Robust Fusion (RF),

• Covariance Intersection (CI) and

• Centralized Kalman Filter (CKF).

The Centralized Kalman Filter (CKF) is simply a standard Kalman Filter containing all

agent states. It serves as a measure of how close the decentralized estimators are to the

optimal centralized estimator. We used the following values for the noise parameters: Qi =

10−2I2 for all agents, R1 = I2 and Rij = 10−2I2 for all pairwise measurements. The Robust

Fusion based estimator significantly outperforms the Covariance Intersection based estimator

and achieves performance comparable with the Centralized Kalman Filter without tracking

the cross-covariances between state estimates of different agents.

Agent # CKF RF CI

1 0.0483± 0.0367 m 0.0441± 0.0380 m 0.0476± 0.0372 m
2 0.0793± 0.0286 m 0.0597± 0.0401 m 0.1131± 0.0637 m
3 0.0524± 0.0350 m 0.0673± 0.0472 m 0.1349± 0.0713 m
4 0.0588± 0.0357 m 0.0527± 0.0494 m 0.1263± 0.0705 m

Table 6.1: Steady state position errors of all three compared methods for the first experiment.

6.7 Conclusions

In this chapter, we addressed the problem of fusing two random vectors with unknown

cross-correlations by proposing a novel minimax approach. We extended our formulation

to linear measurement models and proposed an efficient method for solving the resulting

minimax optimization problem. As an application, we considered the problem of decentral-

ized cooperative localization for a group of mobile agents. The proposed estimator takes

cross-correlations into account while being less conservative than the widely used Covariance

Intersection. As a result, it produces more accurate estimates as numerical examples and
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Figure 6.4: Error of the proposed method for the x coordinate of positions of the 4 agents
and corresponding 3σ intervals for the proposed method, the centralized Kalman filter and
the Covariance Intersection. It can be seen that the proposed method produces accurate
estimates while being significantly less conservative than Covariance Intersection.
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method.
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simulations clearly demonstrated.

92



Chapter 7

Distributed rotation localization from

bearing measurements

7.1 Introduction

The goal of this chapter is to provide distributed estimation algorithms for the 3-D bearing-

only rotation localization problem. As in [106], we do not assume knowledge of any relative

rotation between nodes; however, with respect to the state of the art we make the following

contributions:

• We consider a large class of graph topologies that also allow the presence of bearing

measurements with respect to external auxiliary points (e.g., feature points matched

across cameras at different agents);

• We prove stronger localizability results than those provided in [106] (e.g., we show

that the three-nodes fully-connected network is uniquely localizable);

• We compare and contrast our results with the epipolar geometry theory from computer

vision;
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• We provide a distributed algorithm, based on distributed Riemannian gradient descent,

that can work on any localizable network.

This chapter is structured as follows: Section 7.2 includes notation and preliminaries, and

Section 7.3 contains the problem statement. Sufficient localizability conditions are given

in Section 7.4. The proposed distributed optimization algorithm for solving the problem

at hand is the objective of Section 7.5. A spectral relaxation is discussed in Section 7.6.

Finally, experimental results are presented in Section 7.7.

7.2 Notation and preliminaries

7.2.1 Graph theory

We first introduce definitions that allow us to model the types of problems for which we can

show our localizability result. We assume that the network of agents can be modeled as a

graph G = (V ∪ V ′, E ∪ E′) where V = {1, . . . , N} represents the set of frames (agents) to

localize, V ′ is a set of auxiliary nodes (e.g., 3-D points with unknown location), E ⊂ V × V

represents the set of frame-to-frame measurements such that (i, j) ∈ E implies that node

i ∈ V can sense and communicate with node j ∈ V , and E′ ⊂ V × V ′ represents the set of

frame-to-point measurements between agents that need to be localized and auxiliary nodes.

We denote by Ni the set of frame-to-frame neighbors of agent i, that is

Ni = {j ∈ V : (i, j) ∈ E}, (7.1)

We assume that each agent i ∈ V can freely exchange data with any of the neighbors Ni

(auxiliary points in V ′ are not expected to exchange data, unless they are also agents in V ).

Furthermore, we make the assumption that the graph G satisfies the following definition.

Definition 7.2.1. A graph G = (V ∪V ′, E ∪E′) is said to be plated if both of the following
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conditions hold:

• The set of edges E is symmetric, that is, (i, j) ∈ E =⇒ (j, i) ∈ E;

• For any edge (i, j) ∈ E, there exist at least one k ∈ V ′ such that the two edges

(i, k), (j, k) are in E′.

Note that this definition includes the important particular case where V ∩ V ′ 6= ∅, and

E ∩E′ 6= ∅; in this case, nodes in V ∩V ′ correspond to agents that need to be localized, but

that can also serve as an auxiliary node for other edges.

This assumption can be somewhat relaxed by simply assuming that the graph G contains

a plated graph as a subgraph (although our algorithms, as presented here, might not make

use of all available measurements in this case).

Definition 7.2.1 is at the core of our sufficiency results, as it partitions the vertices in G into

triples.

Definition 7.2.2. The set of triples of a plated graph G is defined as TG = {(i, j, k) ∈

V × V × V ′ : j ∈ Ni, (i, k), (j, k) ∈ E′}.

Each triple is ordered (i.e., the order in which i, j, and k appear is important). Every agent

can become a aware of the triples it belongs to through simple distributed mechanisms

(e.g., by exchanging information about possible k with every neighbor j ∈ Ni, assuming i

is always the first index for its triplets). For convenience, we define the set Nij of frame-to-

point neighbors of two frame-to-frame neighbors i, j as

Nij = {k : (i, j, k) ∈ TG}. (7.2)

7.2.2 Poses, points and vectors

Let W represent an arbitrary global reference frame. For each agent i ∈ V, we associate a

reference frame Bi, and we define the pose (Ri, Ti) ∈ SE(3) to be the rigid body transfor-
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mation from Bi to W; Ri ∈ SO(3) is a rotation, while Ti ∈ R3 is a translation. Note that

Ti can be also interpreted as the coordinates of agent i in the world frame.

We denote as wx, and ix the coordinates of a point x expressed, respectively, in the world

and i-th local frame. With this notation, a point x ∈ R3 transforms under the pose (Ri, Ti)

according to

wx = Ri
ix+ Ti. (7.3)

In this work, it will be necessary to distinguish between points and vectors. We define a

vector to be the difference of two points. The coordinates for a vector in a given reference

frame can be obtained by taking the difference of the coordinates of the points in that frame;

it then follows from (7.3) that vectors transform across reference frames according to

wv = Ri
iv, (7.4)

that is, they are not affected by the translation component.

7.3 Problem statement

Let tij denote the normalized vector between Tj and Ti, that is,

wtij =
Tj − Ti
‖Tj − Ti‖2

. (7.5)

We assume that, for every (i, j) ∈ E ∪E′, agent i measures the bearing itij of agent j in its

own reference frame, which, according to (7.4), is given by:

itij = RTi
wtij . (7.6)
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Using this relation and the definition (7.5), we obtain the following relation between the

bearings associated to the two edge directions between the same pair of nodes i, j:

Ri
itij = −Rjjtji. (7.7)

Throughout the rest of this chapter, we make the standing assumption that the locations of

the nodes in V ∪V ′ are in general position. More precisely, we assume that for every triplet

(i, j, k) ∈ TG, the locations Ti, Tj , Tk do not belong to a common line in R3. Thanks to this

assumption, each triplet (i, j, k) ∈ TG uniquely defines a plane; let nijk denote a normal

vector to this plane.

Note that tij , tji, tik, tjk all belong to the plane of triplet (i, j, k) ∈ TG. Using the properties

of the cross product in R3 (denoted as ×), the normal nijk can be separately computed in

the i-th and j-th local frame as:

inijk = RTi
wnijk = (itij × itik)/‖itij × itik‖2, (7.8)

jnijk = RTj
wnijk = (jtjk × jtji)/‖jtjk × jtji‖2, (7.9)

wnijk = (wtij × wtik)/‖wtij × wtik‖2, (7.10)

see also Fig. 7.1 for a graphical representation. It is important to notice that the ordering

of the cross products in (7.8) and (7.9) is important, as they guarantee that inijk and jnijk

are the local expression of the same world-frame vector wnijk (i.e., they do not correspond

to opposite orientations of the triangle). Moreover, (7.8) and (7.9) can be readily and

independently computed at each one of the nodes i and j, without any knowledge of the

absolute or relative poses of the agents.

The goal of this work is to solve the following rotation localization problem [106]:

Problem 1. Given a set of nodes G = (V,E), and a set of local bearings {itij}(i,j)∈E ,

find matrices {Ri}i∈V that represent the rotation from the local reference frames {Bi} to a
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Figure 7.1: Illustration of the measurements available to the nodes in a triplet. Black arrows:
local reference frames at nodes i and j; cyan arrows: available bearing measurements; orange
arrows: normals obtained from the bearing measurements.

common global reference frame W.

Note that the conditions for translation localizability, and the closely related concept of

bearing rigidity, are well understood [132]. However, these conditions are not the same as

those for rotation localizability.

7.4 Sufficient localizability conditions

The commonly accepted technical definition for rotation localizability of a network is the

following [135, 106].

Definition 7.4.1. A network is said to be rotation localizable if, given the rotation Rı̂ for a

node ı̂ ∈ V , every rotation Ri, i ∈ V is uniquely determined by the available measurements.

The requirement on Rı̂ is necessary to fix the ambiguity in the choice of a global reference

frame.

We give the following main theoretical result for our setting (3-D bearing only measure-

ments):

Theorem 7.4.2. The plated graph G = (V ∪V ′, E∪E′) is rotation localizable if the subgraph
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GV = (V,E) contains a spanning tree.

The proof of Theorem 7.4.2 is based on the following lemma, which considers the localiz-

ability of two nodes in a triple.

Lemma 7.4.3. Let (i, j, k) be a triple in TG. Then the rotation Rij = RTi Rj can be uniquely

determined from the measurements {itij , jtji, itik, jtjk}.

Proof. The proof of the lemma is constructive (i.e., it directly provides a way to compute

Rij). Define the binormal to the plane for triple (i, j, k) ∈ TG as

bijk = nijk × tij ; (7.11)

due to the properties of the cross product, bijk is orthogonal to both nijk and tij . Since nijk

and tij have both unit norm, the vector bijk has unit norm as well. As a consequence, the

tree vectors (tij , nijk, bijk) define orthonormal axes.

The binormal bijk can be independently computed in the reference frames Bi and Bj as:

ibijk = inijk × itij , (7.12)

jbijk = jnijk ×−jtji. (7.13)

Again by using the rule for transforming vectors (7.4), we have

ibijk = RTi Rj
jbijk. (7.14)

Let the two matrices Qi, Qj ∈ R3×3 be defined as

Qi =

[
itij

inijk
ibijk

]
, (7.15)

Qj =

[
−jtji jnijk

jbijk

]
; (7.16)
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these matrices contain the coordinates of the triple of axes (tij , nijk, bijk) in the reference

frames of the two nodes.

Using Qi, Qj , we can combine (7.7), (7.8), (7.9) and (7.14) into the matrix equation Qi =

RijQj , from which we can uniquely compute Rij as:

Rij = QiQ
T
j . (7.17)

This expression depends exclusively on measurements available at nodes i and j (in other

words, the specific world reference frame used for the derivation does not matter), thus

proving the claim.

Remark 7.4.4. The matrices Qi and Qj have an intuitive interpretation; let Wij be a

reference frame co-centered with Bi and having the x, y, and z axes aligned with tij (which

is the same as −tji), nijk, and bijk, respectively (see Figure 7.1); then Qi (respectively, Qj)

represents the rotation from Wij to Bi (respectively, Bj). Additionally, by construction and

the properties of the cross product, in Wij, Tj will be located along the x axis, while Tk will

have zero y component, and negative z component.

Given the above, the proof of the theorem is quite simple.

Proof. (Theorem 7.4.2) Let Gst ⊂ GV be the spanning tree of the plated graph G. Due

to Definition 7.2.1, Gst is undirected. After fixing Rı̂, we can use Lemma 7.4.3, and in

particular (7.17), to uniquely determine the rotation Rj of each neighbor j : (̂ı, j) ∈ E. This

process can be inductively repeated until all rotations Ri, i ∈ V are determined.

7.4.1 Relation with epipolar geometry

This section explains the relations between the results of this work (in particular Lemma 7.4.3)

and those in traditional computer vision.
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We start by reviewing the following fundamental result in standard computer vision geometry[82,

80]:

Proposition 7.4.5. Given at least five image correspondences from two views (nodes) i and

j, it is possible to estimate, up to sign, the essential matrix

Eij = it̂ijRij ∈ R3×3. (7.18)

Note that we used the notation v̂ ∈ R3×3 to indicate the skew-symmetric matrix defined

such that v̂w = v × w for any w ∈ R3. In computer vision, the normalized translation

itij is also known as the epipole. In the terminology used in this work, the assumption in

Proposition 7.4.5 translates into having at least five auxiliary vertices kl ∈ V ′, l ∈ {1, . . . , 5},

such that (i, kl), (j, kl) ∈ E′, but without necessarily assuming (i, j) ∈ E.

The essential matrix Eij can be estimated from the image correspondences using standard

algorithms [82, 45]. Once the essential matrix is obtained, it can be decomposed according

to the following:

Proposition 7.4.6. For any essential matrix E there exist four valid decompositions, in the

sense that there are four pairs of rotations and normalized translations {(Rl, tl)}, l ∈ 1, . . . , 4

such that E = ±t̂lRl. Of these, only one satisfies the chirality constraints, i.e., only one

implies that the 3-D reconstructions from the image correspondences are in front of both

cameras.

The four pairs are also known as the twisted pair ambiguity, and, with respect to the “true”

decomposition, differ by rotations of 180◦ and inversion of the translation [82, 133], see

Figure 7.2 for a pictorial example.

Given these basic results from computer vision, it might be somewhat surprising that, in our

setting, we can uniquely estimate the relative rotation between two poses (Lemma 7.4.3),

without having to estimate the essential matrix, or considering the twisted pair ambiguity

and the cheirality constraint. However, the key difference in our setting is that the epipole
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Figure 7.2: Illustration of the twisted pair ambiguity (reproduced from [133]).

itij (direction of the translation) is assumed to be directly observed (i.e., (i, j) ∈ E). This

not only fixes the unknown translation, but also fixes two degrees of freedom for the rotation;

as a result, a single image correspondence (i.e., auxiliary point) instead of five is sufficient

for a pair of agents.

Moreover, in our case the twisted pair ambiguity is solved by two facts. First, the observation

of the epipole in Bi fixes its sign, thus excluding two out of four solutions. Intuitively, in

our case, the two remaining solutions correspond to the fact that, geometrically, one could

select an opposite normal at Bj ; however, this is prevented by the observation of the epipole

in Bj , and the ordering of the agents (with the cheirality constraint equivalent to the fact

that Tk must have negative z component in Wij , see Remark 7.4.4).

subsectionRelation with [106]

In Lemma 14 of [106], it is stated that for a network graph G3 with three nodes and

a complete sensing graph, there are two solutions that are compatible with the bearing

measurements. However, since this graph G3 is plated by Definition 7.2.1, according to

Theorem 7.4.2 there is only one solution (up to a choice of a global reference frame). The

main difference between the two results is that Lemma 14 in [106] only uses the bearing
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constraints given by (7.19), and not the ones from the normals in (7.20). The secondary

difference is that our most basic result (Lemma 7.4.3) involves three nodes but only four

measurements (instead of six). Finally, the result from [106] makes some generic assumptions

on axes of rotations derived from the bearing measurements; these assumptions, however,

are not formally verified (in fact, all the bearings are essentially coplanar, so not generic),

with the results that the two solution could actually coincide (in fact, preliminary numerical

simulations suggest that this is the case). A more in-depth analysis of our results with

respect to [106] is left as future work.

7.5 Distributed localization algorithm

In this section, we restate the constraints contained in each triple of nodes in TG to derive a

global cost ϕ that measures the consistency of a given localization with these constraints, and

we provide a distributed gradient descent algorithm on SO(3)N that recovers a localization

by minimizing this cost.

7.5.1 Constraints and cost function

To reiterate, (7.7), (7.8), (7.9) and (7.14), give the following constraints on the absolute

orientations Ri, Rj ∈ SO(3):

Ri
itij = −Rjjtji, (7.19)

Ri
inijk = Rj

jnijk, (7.20)

Ri
ibijk = Rj

jbijk. (7.21)

For each edge (i, j) ∈ E , we can encode the constraints (7.19), (7.20) and (7.21) into a cost

that penalizes their squared Euclidean norm. Since itij , jtji, inijk, jnijk, ibijk, jbijk have
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unit norm, and Ri, Rj are orthogonal matrices, we can simplify this cost into the following:

ϕij(Ri, Rj) = tr(RiMijR
T
j ), (7.22)

where Mij ∈ R3×3 is defined by

Mij = − 1

|Nij |
∑
k∈Nij

(−wtitijjtjiT + wn
inijk

jnijk
T + wb

ibijk
jbijk

T ), (7.23)

where wt, wn, wb ≥ 0 are scalar weights.

Remark 7.5.1 (Symmetry of pairwise objective). Observe that since Mji = MT
ij , the pair-

wise cost ϕij is symmetric in the sense that

ϕji(Rj , Ri) = ϕij(Ri, Rj). (7.24)

We finally propose to recover the unknown rotations {Ri}Ni=1 ∈ SO(3)N by minimizing the

objective

ϕ
(
{Ri}Ni=1

)
=

∑
{i,j}∈E

ϕij(Ri, Rj), (7.25)

with distributed gradient descent on SO(3)N with constant step-size. Note that we used the

unordered set notation {i, j} ∈ E instead of the ordered set notation (i, j) ∈ E in order to

emphasize that each pairwise objective in the total cost is counted only once, since pairwise

objective are symmetric (see Remark 7.5.1).

Remark 7.5.2 (Connection with rotation synchronization). Rotation synchronization refers

to the problem of estimating absolute orientations R1, . . . , RN ∈ SO(3) from noisy relative

measurements {R̃ij}{i,j}∈E. When the cost function is chosen to be the squared Frobenius

norm, we obtain the following optimization problem

min
R1,...,RN∈SO(3)

∑
{i,j}∈E

‖R̃ij −RTi Rj‖2F . (7.26)
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Problem (7.26) is equivalent, since R1, . . . , RN are orthogonal matrices, to the following

problem

min
R1,...,RN∈SO(3)

−
∑
{i,j}∈E

tr(RiR̃ijR
T
j ). (7.27)

Note that when wt = wn = wb = 1 , Mij =
1

|Nij |
∑

k∈Nij Rij where Rij is the relative

rotation defined in (7.17). Moreover, if for each pair of agents (i, j) ∈ E, we use only one

auxiliary node k, then, the minimization of the objective ϕ({Ri}Ni=1) over SO(3)N is identical

to Problem (7.27).

7.5.2 Algorithm

In this subsection, we present the numerical algorithm for minimizing the objective function

ϕ
(
{Ri}Ni=1

)
. First, we compute the Riemannian gradient of the objective function. Then,

we present the iterations of Riemannian gradient descent with constant step-size for this

particular problem, and finally, we discuss the choice of step-size that guarantees convergence

to a critical point.

The Riemannian gradient of ϕij(Ri, Rj) with respect to Ri, denoted by gradRi ϕij(Ri, Rj),

can be computed as

gradRi ϕij(Ri, Rj) = 2Ri skew(RTi RjM
T
ij ), (7.28)

where skew(·) denotes the skew-symmetric part of a matrix. For details on gradient com-

putation of a real-valued function defined on a Riemannian manifold we refer the reader to

[135, 2]. The gradient of the objective function with respect to Ri can be computed as:

gradRi ϕ({Ri}Ni=1) = 2Ri
∑
j∈Ni

skew(RTi RjM
T
ij ). (7.29)

The Riemannian gradient descent method [135] with constant step-size ε at iteration t has
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the general form:

Wi(t) = − gradRi ϕ({Rj(t)}Nj=1), (7.30)

Ri(t+ 1) = expRi(t)(εWi(t)), (7.31)

for all i = 1, 2, . . . , N . In the specific case under consideration, equation (7.29) implies that

the gradient descent at iteration t is as follows:

Ri(t+ 1) = Ri(t) exp
(
−2ε

∑
j∈Ni

skew(Ri(t)
TRj(t)M

T
ij )
)
, (7.32)

for all i = 1, 2, . . . , N .

Choice of step-size . At this point, we discuss the choice of the step-size ε that guarantees

convergence of the proposed algorithm. First, we need the following lemma from [131].

Lemma 7.5.3 (Adapted from Tron et al. [131]). Assume that for all {Ri}Ni=1 ∈ SO(3)N ,

the maximum eigenvalue, denoted by λmax, of the Hessian of ϕ, as defined in (7.25), can

be upper-bounded by some positive constant L. Then, for step-size ε ∈ (0, 2/L), every limit

point of the sequence generated by (7.32) is a critical point for the problem of minimizing ϕ

over SO(3)N .

We derive a value for the uniform upper-bound L in the following lemma.

Lemma 7.5.4. Let dmax denote the maximum degree of graph G, that is, dmax = maxi∈V |Ni|,

and let wmax = max{wt, wn, wb}. Then, for all {Ri}Ni=1 ∈ SO(3), the maximum eigenvalue

of the Hessian can be upper-bounded as follows:

λmax(Hessϕ({Ri}Ni=1)) ≤ 4wmaxdmax. (7.33)

A detailed proof of the above lemma is included in Appendix F.1 and it is based on the

definition of the Riemannian Hessian and on Gershgorin circle theorem. A corollary of the
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two previous lemmata now follows.

Corollary 7.5.5. For any step-size ε satisfying

0 < ε <
1

2wmaxdmax
, (7.34)

every limit point of the gradient descent scheme (7.32) is a critical point of ϕ({Ri}Ni=1).

Remark 7.5.6. Note that all the quantities in the bound in (7.34) can be computed in a

distributed way using max-consensus algorithms [26] in a finite number of steps (equal to the

diameter of the graph).

7.6 Initialization by spectral relaxation

In this section, we propose a spectral relaxation for the problem at hand which in turn, can

be solved in a decentralized fashion by the method of Chapter 5. First, we reformulate the

problem at hand as a quadratic optimization problem over SO(3)N by including only one

auxiliary node k for every pair (i, j) ∈ E. The solution of the reformulated problem, in the

noiseless case, is given by the 3 leading eigenvectors of a properly defined symmetric matrix.

First, consider a pair of agents (i, j) ∈ E and an auxiliary node k perceived by both agents

i and j. Moreover, let Qi and Qj as in (7.15) and (7.16) respectively. Then, constraints

(7.7), (7.8), (7.9) and (7.14) imply that Ri and Rj must satisfy:

RjQj = RiQi. (7.35)

Based on these constraints only and under the choice of squared Frobenius norm penalty,

we formulate rotation localization as the following optimization problem on SO(3)N :

minimize
R1,...,RN∈SO(3)

∑
{i,j}∈E

‖RjQj −RiQi‖2F . (7.36)
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Consider the block symmetric matrix B ∈ R3N×3N defined by

Bij =


I3, i = j

QiQ
T
j , (i, j) ∈ E

03×3, (i, j) /∈ E

(7.37)

Then, since R1, R2, . . . , RN are orthogonal matrices, Problem (7.36) is equivalent to the

following quadratic optimization problem over SO(3)N :

maximize
R1,...,RN∈SO(3)

∑
{i,j}∈E

tr(RiB
T
ijR

T
j ). (7.38)

Next, we present the spectral relaxation of Problem (7.38). The following lemma sheds light

on how to obtain a spectral relaxation of Problem (7.38).

Lemma 7.6.1 (Adapted from [7]). Let ∆ be the degree matrix of the plated graph G defined

as the diagonal matrix with entries |N1|, |N2|, . . . , |NN |. Then, in the noiseless case, the

matrix (I + ∆)−1B has exactly 3 leading eigenvalues equal to 1. Furthermore, there exist

rotations R1, R2, . . . , RN ∈ SO(3), unique up to a global rotation, satisfying

(I + ∆)−1BR = R, (7.39)

where R =

[
R1 R2 · · · RN

]T
∈ R3N×3.

For a proof of Lemma 7.6.1 we refer the reader to [7]. Based on the preceding lemma, under

relaxed orthogonality and determinant constraints, an approximately optimal solution to

Problem (7.38) is given by the 3 leading eigenvectors of (I + ∆)−1B. Since, (I + ∆)−1B is

not, in general, a symmetric matrix, the approach of [71] is not directly applicable. However,

(I + ∆)−1B is similar to the symmetric matrix (I + ∆)−1/2B(I + ∆)−1/2. Let V ΛV T be an

eigendecomposition of (I + ∆)−1/2B(I + ∆)−1/2, where V is an orthogonal matrix and Λ a
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diagonal. Then, let

(I + ∆)−1/2V =


U1

...

UN

 .
= U, (7.40)

for some 3 × 3 matrices U1, U2, . . . , Un. In the noiseless case, span(R) and span(U) are

equal, and thus, R = UG−1 for some invertible matrix G. Without loss of generality, we

can assume that R1 = I3 and thus, G must be equal to U1. Based on this observation, the

last step of the proposed approach consists of each agent i computing the approximately

optimal R?i by

R?i = ProjSO(3)(UiU
−1
1 )T , (7.41)

where ProjSO(3) denotes the projection onto set of 3 × 3 rotation matrices, which can be

computed using Singular Value Decomposition (SVD) (see Appendix F.2).

Overall, we propose the following four-step approach for solving the spectral relaxation:

1. All agents collectively compute the 3 leading eigenvectors V =

[
v1 v2 v3

]
of (I +

∆)−1/2B(I + ∆)−1/2 using the decentralized approach of Chapter 5.

2. Each agent i computes Ui as defined in (7.40).

3. Agent 1 transmits U1 to the entire group.

4. Each agent i computes R?i as in (7.41).

7.7 Simulations

7.7.1 Qualitative results

In this section we will present some synthetic experiments to illustrate the behavior of the

proposed algorithm.

109



 y
 x

 x
 y

 x

 z
 y  x

 z

 z  z
 y

 x

 y

 z  z

 z
 z

 z

 z

-2
 y

0

z

 x

5

2

5

 z

y

 x

0

 y

 y

 x

x

0

 x

 y

-5

 y

 y

-5

 x

 x

(a)

s

 x

 x

 x
 y

 y

 y
 z

 x

 z

 z  z
 y

 x

 y

 z  z  z

 z

-2
 y

0

 z

z

 x

2

5

5

y

 x
 z

0

 y

 y
 z

x

 x

0

 y

 x

-5

 y

 y

-5

 x

 x

(b)

Figure 7.3: Top: actual synthetic camera network. Bottom: estimated synthetic camera
network.

As a first experiment, we generate a non-planar 4-regular camera network with 11 cameras

approximately located on a circle (see Fig. 7.3). Given the actual bearings itij , we add noise

by

it̃ij = expitij (θijuij), (7.42)

where expx denotes the exponential map of the unit sphere at the unit norm vector x (see,

e.g., [74]). We generate θij from a normal distribution with zero mean and variance σ2
θ . The

direction uij is a uniform direction on the tangent space of itij . In the first experiment, we

use σθ = 5 degrees. Results are presented in Fig. 7.3. The estimated camera orientations

are very close to the ground-truth.
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σθ Error (standard deviation)

0◦ 0.0188◦ (0.0021◦)

2◦ 1.2861◦ (0.1585◦)

5◦ 3.1733◦ (0.4015◦)

10◦ 6.1272◦ (0.7373◦)

20◦ 11.8944◦ (1.4780◦)

45◦ 34.5653◦ (6.7782◦)

Table 7.1: Average orientation error and corresponding standard deviation in degrees for
several values of the noise parameter σθ.

7.7.2 Quantitative results

As a second experiment, we generate Erdos-Renyi graphs with 25 nodes and probabil-

ity of each edge being present p = 0.5. We vary the noise parameter σθ in the range

{0, 2, 5, 10, 20, 45}. We repeat the experiment 1000 times for each level of noise. For each

trial, we collect the angle (in degrees) between the estimated and ground-truth rotations and

we report the average orientation error over the nodes. The average and standard deviation

of the orientation errors after the optimization are reported in Table 7.1. The corresponding

histograms of orientation errors are presented in Fig. 7.4.

7.8 Conclusions

We considered the problem of estimating the orientations of a set of agents with respect

to a global reference frame, using only local bearing measurements. We identified sufficient

conditions for localizability, and proposed a distributed optimization approach to estimate

the unknown orientations, without any prior information.
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Figure 7.4: Histograms of average orientation errors (in degrees) for various values of the
noise parameter σθ.

112



Chapter 8

The trifocal tensor and applications

8.1 Introduction

In this chapter, we propose a parametrization of the trifocal tensor for calibrated cameras

with non-colinear pinholes based on a quotient Riemannian manifold. This parametrization

is almost symmetric (we use a preferred camera only for the translations), and is derived

from a particular choice of the global reference frame. We show how it can be used for

refining estimates of the tensor from image data through state of the art techniques for

optimization on manifolds [1]. In addition, the Riemannian structure provides a notion of

distance between trifocal tensors. We show that this distance can be computed efficiently,

and that it produces meaningful results in a sample Structure from Motion problem.

8.2 Derivation of the trifocal tensor

In this section, we review the derivation of the trifocal tensor that relates lines seen in three

views. This derivation generalizes the one from standard textbooks [46] by not assuming

that one of the camera frames coincides with the global reference frame.
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Let gi = (Ri, Ti) ∈ SE(3) be the pose of the i-th camera such that the camera center in the

global reference frame is simply given by the translation Ti. Assuming that the cameras are

calibrated, the corresponding projection matrices are given by Pi =

[
RTi −RTi Ti

]
∈ R3×4.

Now, let {li}3i=1 be a set of images of three lines intersecting in 3-D. The intersection of the

pre-images of the lines, that is, the three planes with normals ni = P Ti li, i ∈ {1, 2, 3} is not

empty. Then, we have that the matrix N =

[
n1 n2 n3

]
∈ R4×3 is rank-deficient. Hence,

also the following matrix is rank-deficient:

N ′ =

RT1 0

T T1 1

N =

l1 RT1 R2l2 RT1 R3l3

0 T T12R2l2 T T13R3l3

 , (8.1)

where Tij = Ti − Tj . Hence, there must be coefficients α and β such that

l1
0

 =

RT1 R2l2 RT1 R3l3

T T12R2l2 T T13R3l3


α
β

 . (8.2)

From the last row, we can choose α = −T T13R3l3 and β = T T12R2l2. In this way, we get

l1 = lT2 R
T
2 T12R

T
1 R3l3 − lT3 RT3 T13R

T
1 R2l2. (8.3)

We define the canonical tensor centered on camera 1 as

Ti = RT2 T12e
T
i R

T
1 R3 −RT2 R1eiT

T
13R3, (8.4)

for i ∈ {1, 2, 3}, where ei denotes the i-th standard basis vector in R3. Then, equation (8.3)

becomes

(l1)i = lT2 Til3, (8.5)

where (l1)i stands for the i-th component of vector l1.

The canonical tensors centered on the other two cameras can be obtain by a cyclic permu-
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tation of indices, that is

T (k)
i = RTk+1Tk,k+1e

T
i R

T
kRk+2 −RTk+1RkeiT

T
k,k+2Rk+2, (8.6)

for i, k = 1, 2, 3, where indices k, k + 1, k + 2 are intended modulo 3. From now on, we will

omit the superscript (1) and we will always refer to the canonical tensor centered on the

first camera unless explicitly stated.

8.3 The normalized trifocal space

In this section, we define the normalized canonical decomposition of the trifocal tensor.

Under the assumption of non-colinear cameras, we choose a global reference frame such that

the z-axis is aligned with the normal of the plane on which the three cameras lie. Then, we

define the normalized trifocal space and parametrize it with a quotient manifold.

8.3.1 The normalized canonical decomposition

First of all, we define the canonical decomposition for a trifocal tensor in the following

proposition.

Proposition 8.3.1. Any trifocal tensor admits the canonical decomposition

Ti = RT2 T12e
T
i R

T
1 R3 −RT2 R1eiT

T
13R3, (8.7)

where (T12)3 = (T13)3 = 0, eT3 (T12 × T13) > 0 and ‖T12‖22 + ‖T13‖22 = 1.

Proof. Since T12, T13 are invariant to global translations and since ‖R0T12‖22 + ‖R0T13‖22 =

‖T12‖22 +‖T13‖22 for any R0 ∈ SO(3), it follows that the global scale and the global reference

frame can be chosen independently. Under the assumption that the three camera centers

do not coincide, we can always choose a global scale such that ‖T12‖22 + ‖T13‖22 = 1. Then,
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given a tensor in the form (8.4), pick any R0 ∈ SO(3) that aligns the z-axis with the vector

T12 × T13. Then one can verify (R0T12)3 = (R0T13)3 = 0. In conclusion, the tensor can be

written as

Ti = (R0R2)T (R0T12)eTi (R0R1)T (R0R3)− (R0R2)T (R0R1)ei(R0T13)T (R0R3), (8.8)

which is in the form (8.7).

An example of a rotation R0 ∈ SO(3) that aligns the z-axis with the vector T12 × T13 is as

follows:

R0 = expI(θ0û0/‖u0‖2), (8.9)

u0 = (T12 × T13)× e3, (8.10)

θ0 = arccos(eT3 (T12 × T13)/‖T12 × T13‖2). (8.11)

Note that the choice of R0 in the proof is not unique: if R0 is a rotation that satisfies the

requirements, then any rotation RzR0, where Rz denotes a rotation around z-axis, will also

satisfy the requirements.

Intuitively, the change of world coordinates corresponds to aligning the z-axis with the

normal to the plane defined by the three cameras (which is given by T12×T13). This plane is

then parallel to the xy-plane, thus the third components of the translations become zero. For

any two vectors T12, T13 ∈ R3 such that (T12)3 = (T13)3 = 0 and ‖T12‖22 +‖T13‖22 = 1, we will

write (T12, T13) ∈ S3
2. If the camera centers are not colinear, then we have (T12, T13) ∈ S3∗

2 .

Definition 8.3.2. We define the normalized trifocal spaceMT as the image of the mapping

T : SO(3)3 × S3
2 → R3×3×3 defined by

(R1, R2, R3, (T12, T13)) 7→ [T 1, T 2, T 3] (8.12)

with T i as defined in (8.7). Since this mapping is surjective by Proposition 8.3.1, the space
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MT corresponds to the space of all trifocal tensors.

8.3.2 Ambiguities of the canonical form

The purpose of this section is to describe the ambiguities of the previously derived canonical

form. In the proof of Proposition 8.3.1, we saw that the mapping from SO(3)3 × S3
2 to

R3×3×3 as defined in (8.12) is not injective. We now state the conditions under which two

configurations yield the same canonical trifocal tensor. Let Xa, Xb ∈ SO(3)3×S3
2. We define

the equivalence relation “ ∼ ” on SO(3)3 × S3
2 as

Xa ∼ Xb iff T a = T b. (8.13)

Then, we have the following proposition regarding the equivalence class of a point X ∈

SO(3)3 × S3∗
2 .

Proposition 8.3.3. Define the groups

Hz = {(Rz(θ), Rz(θ), Rz(θ), Rz(θ)) : θ ∈ (−π, π]}, (8.14)

Hzπ = {(I3, I3, I3, I3), (I3, I3, I3, Rz(π)), } (8.15)

acting on the left on SO(3)3 × S3∗
2 by componentwise multiplication. Then, given a point

X ∈ SO(3)3 × S3∗
2 , its equivalence class with respect to “ ∼ ” is given by

[X] = {SzSzπX : Sz ∈ Hz, Szπ ∈ Hzπ}. (8.16)

The above result is in accordance with the mirror image ambiguity according to which,

without using the cheirality constraint, the translational parts of the trifocal tensor can be

estimated only up to a sign [145]. This ambiguity corresponds to the action of Hzπ and it

is intrinsic to the tensor estimation process. As a result, [X] in (8.16) has two components.

We will use Sz = (Sz1, Sz2, Sz3, Sz4) and Szπ = (Szπ1, Szπ2, Szπ3, Szπ4) to denote points in
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Hz and Hzπ respectively. Based on Proposition 8.3.3, we propose to parametrize the space

MT with the quotient space

MT = (SO(3)3 × S3
2)/(Hz ×Hzπ). (8.17)

Remark 8.3.4. Proposition 8.3.3 does not hold for colinear configurations, that is, for

points X in the complement of (SO(3)3 × S3∗
2 ) in (SO(3)3 × S3

2). This is because, for these

points, the equivalence class [X] contains additional elements given by the rotation around

the colinearity axis. Nonetheless, the quotient space in (8.17) covers all valid tensors T .

The only difficulty is that, for and only for colinear tensors, distinct points in Xa, Xb ∈ T

might yield the same tensor. However, these points constitute a set of measure zero and,

in practice, as we will see, this does not prevent (8.17) (and its signed version, which we

introduce later) from being a useful parametrization.

T12 T13

C3

C1

C2

x
y

z

(a) Szπ = (I, I, I, I)

T12T13

C2

C1

C3

x
y

z

(b) Szπ = (I, I, I, Rzπ)

Figure 8.1: Ambiguities of the canonical form of the trifocal tensor.

8.4 The signed trifocal manifold parametrization

In this section, we use the cheirality constraint to fix the mirror image ambiguity. Intuitively,

this corresponds to selecting one of the two components of each equivalence class. Then,

we show that the resulting space is a Riemannian quotient manifold. Finally, we introduce

geodesics, the exponential map and an efficient algorithm for computing the logarithm map.
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8.4.1 Three view depth estimation

Let Xw ∈ R3 denote the coordinates of a point p in the world reference frame, x1, x2, x3 ∈ R3

the normalized coordinates of point p in each of the three views and λ1, λ2, λ3 > 0 the

corresponding depths. Then, Xw = λiRixi + Ti for i ∈ {1, 2, 3}. By substituting the first

equation into the other two, and by taking into account Hz and Hzπ, we have

λ2x2 = λ1R
T
2 R1x1 +RT2 Szπ4T12, (8.18)

λ3x3 = λ1R
T
3 R1x1 +RT3 Szπ4T13, (8.19)

where the action of Hz cancels out. Then, the following proposition follows naturally.

Proposition 8.4.1. There is only one choice of Szπ for which λ1, λ2, λ3 > 0.

Proof. We know that there always exists a choice of Szπ ∈ Hzπ (the true one) such that all

depths are positive. Denote this solution by (λ1, λ2, λ3). Then, the depths (−λ1,−λ2,−λ3)

satisfy (8.18) and (8.19) if we now choose S′zπ = Rz(π)Szπ (that is, the other element in

Hzπ). Thus, only one choice corresponds to positive depths.

8.4.2 The signed trifocal manifold parametrization

In view of Proposition 8.4.1, given a point X ∈ MT we can always pick two of the four

components of [X] (the ones corresponding to the positive depths). Thus, ifMT = SO(3)3×

S3
2, we define the signed trifocal parametrization as:

M T= (SO(3)3 × S3
2)/Hz =MT /Hz. (8.20)

This space admits a smooth manifold structure, as shown next.

Proposition 8.4.2. The canonical projection π :MT →M Tis a smooth submersion and

M Tis a manifold of dimension 11.

119



Proof. SinceHz is a compact Lie group and the action is continuous, it follows that the action

is proper. Moreover, Sz1R1 = R1 implies Sz1 = I3. As a result, for any X ∈ SO(3)3 × S3
2,

we have SzX = X implies that Sz is the identity element of the group. Thus, the action

is also free. Finally, the action is trivially smooth and we conclude M Tis a manifold of

dimension:

dimM T= dim
(
SO(3)3 × S3

2

)
− dim

(
Hz

)
= 11. (8.21)

Proposition 8.4.2 implies that the tangent space at a point X ∈ SO(3)3 × S3
2 admits the

decomposition into vertical and horizontal spaces

TXMT = VX ⊕HX . (8.22)

We can give a closed form expression for the vertical space:

Proposition 8.4.3. The vertical space at a point X = (R1, R2, R3, T ) ∈MT is given by

VX = {λêz · (R1, R2, R3, T ) : λ ∈ R}, (8.23)

where · denotes componentwise multiplication and ez = (0, 0, 1)T .

Proof. Let X ∈MT and note that since Hz is one dimensional, also VX is one dimensional.

Let γ(t) = R(t) · X be a curve in the equivalence class of X with R(t) ∈ Hz for all t and

R(0) = I. Then, γ̇(0) = êz ·X = êzX. It follows that VX is spanned by the vector êzX.

At this point, we will endow TXMT with a Riemannian metric which is necessary for defining

the orthogonal projection of a vector onto the vertical and horizontal spaces, and of course

for defining a metric on the signed trifocal manifold. Let any X = (R1, R2, R3, T ) ∈ MT .
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A Riemannian metric g for TXMT can be naturally defined as

g(ξ, ζ) =
1

2

3∑
i=1

tr(ξTi ζi) + tr(ξT4 ζ4), (8.24)

where ξ = (ξ1, ξ2, ξ3, ξ4), ζ = (ζ1, ζ2, ζ3, ζ4) with ξi, ζi ∈ TRiSO(3) for i ∈ {1, 2, 3} and

ξ4, ζ4 ∈ TTS3
2. Now, the orthogonal projection of a tangent vector ξ ∈ TXMT onto the

vertical space VX is given by

P vXξ = êzX
g(ξ, êzX)

g(êzX, êzX)
=

1

4
g(ξ, êzX)êzX, (8.25)

and the corresponding orthogonal projection of a tangent vector ξ ∈ TXMT onto the hori-

zontal HX is simply given by

P hXξ = ξ − P vXξ. (8.26)

Next, we will endowM Twith a Riemannian metric. We will need the following proposition

relating the horizontal lifts of the same tangent vector of the quotient space at two distinct

points in the same equivalence class.

Proposition 8.4.4. Let X ∈MT and ξ ∈ T[X]M T. Then

ξRX = RξX , (8.27)

for all R ∈ Hz, where ξX denotes the horizontal lift of a tangent vector ξ at X.

We then arrive at the desired result.

Proposition 8.4.5. The signed trifocal manifold M Tadmits a structure of a Riemannian

quotient manifold with the Riemannian metric

g[X](ξ, ζ)
.
= gX(ξX , ζX). (8.28)

Proof. Let gX be the Riemennian metric of MT at X ∈ MT defined in (8.24). Then, we
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have

gRX(ξRX , ζRX) = gRX(RξX , RζX) (8.29)

=
1

2

3∑
i=1

tr((RξX,i)
T (RζX,i)) + tr((RξX,4)T (RζX,4)) (8.30)

=
1

2

3∑
i=1

tr(ξTX,iζX,i) + tr(ξTX,4ζX,4) (8.31)

= gX(ξX , ζX). (8.32)

The metric (8.28) does not depend on the choice of the representative of each equivalence

class and thus, it is a well-defined Riemannian metric.

8.4.3 Geodesics and the exponential map

In this section, we show how to obtain geodesics forM Tfrom geodesics in the ambient space

MT with horizontal tangent. The idea has been repeatedly used in [34] to obtain geodesics

for the Stiefel and Grassmann manifold from geodesics of the orthogonal group and in [137]

to obtain geodesics of the Essential manifold from geodesics of SO(3)2. Since the projection

πM T:MT →M Tis a Riemannian submersion, i.e. a submersion that preserves the metric,

we have the following proposition [99]:

Proposition 8.4.6. Let γ(t) be a geodesic on MT such that γ̇(t) ∈ Hγ(t) for all t. Then,

πM T(γ(t)) = [γ(t)] is a geodesic onM T.

Moreover, we have the following proposition for geodesics with horizontal initial tangents.

Proposition 8.4.7. Let γX,ξ(t) be a geodesic on MT emanating from X = γX,ξ(0) with

initial velocity ξ = γ̇X,ξ(0) . If ξ = γ̇X,ξ(0) ∈ HX , then γ̇X,ξ(t) ∈ HγX,ξ(t) for all t.

The above result combined with Proposition 8.4.6 shows that if γ(t) is a geodesic on MT

with γ̇(0) ∈ Hγ(0), i.e. initial tangent belonging to the horizontal space, then [γ(t)] is a

geodesic in the quotient space M T. Thus, the exponential map exp : T[Xa]M T→ M Tis
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defined as [Xb] = exp[Xa](ξ) and can be computed by Xb = expXa(ξXa), where ξXa is the

horizontal lift of ξ at Xa and expXa is the exponential map ofMT = SO(3)3 × S3
2.

8.4.4 The logarithm map and Riemannian distance

In this section, we will determine the logarithm map for the signed trifocal manifold from

its ambient space, and describe an efficient algorithm for computing it. The Riemannian

distance is then given by the norm of the logarithm map. Intuitively, given two points in

MT , we will move the second point to another representative of its equivalence class for

which the squared Riemannian distance ofMT is minimized. This change of representative

will yield a horizontal vector as we will show in Proposition 8.4.8.

Let Xa, Xb ∈MT and Rz(t) denote a rotation around z axis of angle t. Moreover, let

θi(t) = arccos
(
(tr(RTaiRz(t)Rbi)− 1)/2

)
, (8.33)

for i ∈ {1, 2, 3} and

θ4(t) = arccos(tr(T Ta Rz(t)Tb)), (8.34)

which are the geodesic distances in SO(3) and in S3
2. The main proposition for the logarithm

map of the signed trifocal manifold follows.

Proposition 8.4.8. Define the cost function

f(t) =

4∑
i=1

fi(t) =
4∑
i=1

1

2
θ2
i (t) =

1

2

3∑
i=1

d2(Rai, Rz(t)Rbi) +
1

2
d2(Ta, Rz(t)Tb). (8.35)

Moreover, let topt = argmint f(t). Then, the logarithm logXa (Rz(topt)Xb) is a horizontal

vector in HXaMT .
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Proof. By differentiating the functions fi we obtain

ḟi(t) = − θi(t)

2 sin θi(t)
tr(RTaiêzRz(t)Rbi) =

1

2
tr
(
(êzRai)

T logRai(Rz(t)Rbi)
)
, (8.36)

for i ∈ {1, 2, 3} and for i = 4, we have,

ḟ4(t) = − θ4(t)

sin θ4(t)
tr(T Ta êzRz(t)Tb) = tr

(
(êzTa)

T logTa(Rz(t)Tb)
)
. (8.37)

Comparing the condition ḟ(topt) =
∑4

i=1 ḟi(topt) = 0 with the basis of VXa in Proposi-

tion 8.4.3 and the definition of HXa , we deduce that the logarithm logXa
(
Rz(topt)Xb

)
must

be an horizontal vector.

At this point, we will describe an algorithm for computing the logarithm map. Although

global optimization is generally hard, we can exploit the special structure of f to efficiently

compute its global minimizer topt. First, the cost function f is continuous and 2π-periodic,

since Rz(t+ 2π) = Rz(t), but it is not everywhere smooth. For the first three terms in f(t),

the derivative ḟi(t), i ∈ {1, 2, 3}, is not defined when cos θi(t) = −1. This correspond to

discontinuity points tdi, which can be computed in closed form (see [137, Proposition 5.6]).

It can also be shown [137] that fi(t), i ∈ {1, 2, 3} is convex between discontinuity points.

It remains to analyze the behavior of f4(t). We have two distinct cases:

Case 1: Ta = Rz(t0)Tb for some t0 ∈ R. In this special case f4(t) is simply given by

f4(t) = 1
2(arccos(cos(t − t0)))2. The derivative ḟ4(t) is not defined for t = t0 + (2k + 1)π,

k ∈ Z and f̈4(t) = 1 when defined. So, in this case f4 is piecewise convex and thus, f is also

piecewise convex. The four points of discontinuity of ḟ can be computed in closed form and

thus, projected Newton method [11] can be applied to each of four resulting intervals in a

way similar to [137]. Then, the global optimum of f(t) can be computed as the minimum

of the four local minima.

Case 2: Ta 6= Rz(t0)Tb for all t0 ∈ R. This is the more general case. By differentiating ḟ4(t)
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we can obtain a closed form expression for f̈4. Unfortunately, f̈4 can take negative values

and thus, f4(t) is not convex. However, each period can be divided into two intervals, one

at which f4(t) is convex (thus easy to optimize) and one at which f4(t) is concave (for which

we use a branch-and-bound search). First, we need to identify these intervals. Let

c14 = (TbT
T
a )1,1 + (TbT

T
a )2,2, (8.38)

c24 = (TbT
T
a )1,2 − (TbT

T
a )2,1. (8.39)

Then, ḟ4(t) = 0 for t = arctan(c24/c14). It can be immediately seen that ḟ4(t) = 0 has

two solutions: one corresponding to the minimum over a period and one corresponding to

the maximum. Let tmax and tmin denote these two values. Since f̈4(t) is continuous, it

follows that f̈4(tmin) > 0 and f̈4(tmax) < 0. As a consequence, f4 is convex in an interval

(tc1, tc2) around tmin, and concave in an interval (tc2, tc1 + 2π) around tmax. The values tc1

and tc2 can be computed from tmax and tmin using the bisection method for f̈4(t) = 0. For

the interval (tc1, tc2) we have that f(t) is continuous, convex with up to three discontinuity

points of the first derivative. Thus, a projected Newton method as in [137] can be again

applied to each of the subintervals. For the interval (tc2, tc1 + 2π), f(t) is generally neither

convex nor concave, and we implement a branch-and-bound search. Since we already have a

good initial guess from the interval where f(t) is convex, most of the subintervals are quickly

rejected. Moreover, a lower bound for f in an interval [a, b], on which f4 is concave, can

be efficiently estimated by minimizing the following convex underestimate of f(t) using the

Newton method

fl(t) =

3∑
i=1

fi(t) +
f4(b)− f4(a)

b− a
(t− a) + f4(a). (8.40)

This underestimate is simply the sum of the three piecewise convex function f1, f2, f3 with

a linear underestimate of f4.

In conclusion, using the above described method, the computation of the logarithm log[Xa][Xb]

between two equivalence classes [Xa], [Xb] ∈M Tcan be efficiently carried out. The distance
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Figure 8.2: An instance of the cost f(t) (in red) and f4(t) (in blue) for one period. Black
dashed lines correspond to the three discontinuity points tdi. Shaded region corresponds to
the interval on which f4 is concave and the red circles to the local minimizers of f(t).

can then be computed as the norm of the logarithm, that is,

d([Xa], [Xb]) = ‖log[Xa][Xb]‖. (8.41)

8.5 Optimization on the trifocal manifold

In this section, we describe how to minimize a cost function that takes as input a trifocal

tensor. For example, assume we have n point-line-line correspondences x1p ↔ l2p ↔ l3p,

p = 1, 2, . . . , n. Such a cost function is the sum of squared algebraic errors which is given by

fa(T ) =
n∑
p=1

3∑
i=1

(
(x1p)il

T
2pTil3p

)2
. (8.42)

Another example is the Sampson error [46, 83], i.e. the first order approximation to the

geometric error:

fs(T ) =

n∑
p=1

3∑
i=1

(
(x1p)il

T
2pTi l3p

)2
Jp(T )Jp(T )T ,

(8.43)

where Jp(T ) is the Jacobian of the expression (x1p)il
T
2pTil3p with respect to x1p, l2p and l3p

(note that this is a row vector).
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More generally, given a real-valued function f : R3×3×3 → R, let fMT : MT → R defined

by

fMT = f ◦ T , (8.44)

where T is the map given in Definition 8.3.2. Moreover, letXa, Xb ∈MT such thatXa ∼ Xb.

Since fMT is constant in each equivalence class, it induces a unique function fM TonM T

such that

fMT = fM T◦ π. (8.45)

In order to combine the parametrization ofM Tgiven by the exponential map with the trust-

region methods described in [1] we need to compute grad fM T([X]) and Hess fM T([X])[ξ].

Tangent vectors to quotient manifolds are represented in a computer program by their

horizontal lifts. In detail, grad fM T([X]) is represented by its horizontal lift grad fMT (X)

at X. Note that grad fMT (X) is guaranteed to be an horizontal vector. Thus, we just have

to compute the (Riemannian) gradient of fMT . In the rest of this section, we show how

to obtain the expression for the Riemannian gradient from its Euclidean counterpart and

an expression of the Riemannian Hessian from the Euclidean gradient and the Euclidean

Hessian.

Let X(t) be a geodesic curve of the form X(t) = (R1(t), R2(t), R3(t), T (t)). Let T (t)
.
=

T (X(t)). Now, consider the function

fMT (X(t)) = f(T (t)).

At t = 0 we have

g
(
Ẋ, grad fMT (X)

)
= 〈Ṫ , grad f(T )〉, (8.46)

g
(
Ẋ,Hess fMT (X)[Ẋ]

)
= 〈T̈ , grad f(T )〉+ 〈Ṫ ,Hess f(T )[Ṫ ]〉, (8.47)

where 〈·, ·〉 denotes the usual Euclidean inner product.
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Figure 8.3: Relative (top) and geodesic (in SO(3)3×S5, bottom) mean (dashed) and median
(solid) errors before and after non-linear minimization of either the algebraic or Sampson
cost.

To alleviate the notation, let G = grad f(T ) ∈ R3×3×3 and let Gi be i-th slice of G for

i = 1, 2, 3. We have that

grad fMT (X) = (ξ1, ξ2, ξ3, ξ4),

where

ξ1 = 2
∑3

i=1 PR1

((
R3G

T
i R

T
2 T12 −R2GiR

T
3 T13

)
eTi
)

(8.48)

ξ2 = 2
∑3

i=1 PR2

(
R2TiGTi

)
(8.49)

ξ3 = 2
∑3

i=1 PR3

(
R3T Ti Gi

)
(8.50)

ξ4 =
∑3

i=1 PT
(
R2GiR

T
3 R1ei,−R3G

T
i R

T
2 R1ei

)
(8.51)

where PRξ = R skew(RT ξ), skew denotes the skew-symmetric part of a matrix, and PXξ =

ξ−X tr(XT ξ) denotes the orthogonal projection of a vector ζ ∈ R3×2 onto the tangent space

TTS3
2. For a detailed derivation, we refer the reader to Appendix G.4. The Riemannian

Hessian can be computed using (8.47), but the explicit expression is rather involved and

therefore, omitted.

We evaluate our implementation on the fountain-P11 dataset from [123] which includes the

ground-truth camera poses. We extract SIFT features [141] to obtain point correspondences

across different image triplets. We keep only image triplets with more than 50 point corre-
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spondences. To obtain an initial estimate of the trifocal tensor, we use the linear algorithm

described in [145]. For optimization on the signed trifocal manifold, we use the trust-region

solver of [14]. As error metric, we use the relative error between the estimated tensor and the

ground-truth in the Frobenius norm sense. We also use the geodesic distance of SO(3)3×S5

since the trifocal tensor can be parametrized by three camera orientations and two relative

translations of unit total length. To compare with the ground-truth, we align the estimated

rotations and relative translations using orthogonal Procrustes analysis. We vary the num-

ber of point correspondences from 9 to 40. For each image triplet and each number of

correspondences, we repeat our experiment 50 times by randomly selecting a different set of

correspondences each time.

The results are presented in Figure 8.3. We compare the solution of the linear algorithm

[145] with the solutions obtained by minimizing the algebraic (8.42) and the Sampson (8.43)

errors on the trifocal manifold. The proposed optimization significantly outperforms the

linear algorithm and produces very accurate estimates even with only few correspondences.

8.6 Pose averaging and the Weiszfeld algorithm

The Weiszfeld algorithm has been traditionally used for computing the l1-mean (geometric

median) of a set of points in Rn. Recently, Hartley et al.[47] proposed the use of the

Weiszfeld algorithm for the purpose of rotation averaging under the l1-norm. Instead of

using RANSAC for outlier rejection, they obtain multiple estimates of the relative rotations

from the corresponding essential matrices, and average them using the Weiszfeld algorithm

on SO(3). This idea has been extended in [137] for averaging essential matrices.

A generic form of the Weiszfeld algorithm for an arbitrary Riemannian manifold M is

presented in Algorithm 4. The new iterate x(t + 1) is obtained by taking the exponential

map of a weighted average of directions on the tangent space of the current iterate. The

weights are inversely proportional to the geodesic distance between the current iterate and
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each sample. Intuitively, points away from the current estimate have little impact on the

update and thus, the algorithm is robust to outliers.

In this work, we use the Weiszfeld algorithm to average estimates of trifocal tensors seen

as points on the signed trifocal manifold M T. As in [137], the initial estimate is chosen

as the midpoint of the two points having the lower cost. The sample trifocal tensors were

obtained by the linear algorithm described in [145]. Unfortunately, this method does not

perform well for a small number of point correspondences, resulting in noisy samples. In our

experiments we observed that the algorithm converged in 10 to 15 iterations. We compare

our approach with RANSAC and with the Weizsfeld algorithm on the manifold SO(3)2×S5,

i.e. a manifold parametrization of the trifocal tensor with R1 = I3. The purpose of this

experiment is to show the advantage of the quotient versus non-quotient parametrization

when using distances between trifocal tensors. We vary the number of samples from 10

to 50. The results are shown in Figure 8.4. Although it is hard to beat RANSAC, the

Weizsfeld algorithm can be used to obtain a sufficiently good initial estimate of the trifocal

tensor without the need of tuning a threshold like RANSAC. Also, the Weiszfeld algorithm

performs much better on the quotient manifold, as anticipated.

8.7 Conclusions

In this chapter, we investigated a novel parametrization of the trifocal tensor for calibrated

cameras with non-colinear pinholes obtained from a quotient Riemannian manifold. We

incorporated techniques for optimization on manifolds and pose averaging in our approach

Algorithm 4 Weiszfeld averaging
1: Input: Points x1, x2, . . . , xn ∈M, initial estimate x(0)
2: for t = 0, . . . , N do
3: wi(t) = d(x(t), xi)

−1

4: x(t+ 1) = expx

(∑
iwi(t) logx(xi)∑

iwi(t)

)
5: end for
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Figure 8.4: Relative (top) and geodesic (bottom) mean (dashed) and median (solid) errors
for the Weiszfeld (quotient and non-quotient parametrizations) and RANSAC algoritms,
without and with non-linear minimization.
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and we showed that the resulting distance is meaningful.
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Chapter 9

Conclusions and future vistas

This work aimed at developing collaborative algorithms for groups of visual sensors. More

specifically, we aimed at solving two main problems: collaborative data association and

cooperative localization. We focused on optimization algorithms that are decentralized.

First, we proposed a distributed optimization method for solving the permutation synchro-

nization problem and a distributed optimization approach for the general case of multiway

matching. We rigorously analyzed the convergence properties of the proposed algorithms

and provided experimental evidence supporting that the proposed approaches, albeit decen-

tralized, have performance comparable with the state of the art centralized approaches. A

potential future direction consists of enforcing cycle consistency in neural networks, a direc-

tion which has recently gained attention [154, 55, 105]. Another potential future direction

consists of applying the proposed methods for data association in a multi-robot semantic

Simultaneous Localization and Mapping (SLAM) setting.

Secondly, we proposed a distributed dynamical systems approach for the problem of dis-

tributedly estimating any number of smallest eigenvalues and the associated eigenvectors of

a weighted graph with global convergence guarantees. We demonstrated the validity of our

approach through rigorous theoretical analysis and experimental evaluation and we applied
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the proposed method to the problem of permutation synchronization. A potential future

direction consists of applying the proposed method to solve spectral clustering problems [92]

in a decentralized multi-agent setting.

Thirdly, we addressed the problem of decentralized cooperative localization for a group of

mobile agents. We proposed a minimax formulation to deal with missing cross-correlations.

The proposed estimator takes cross-correlations into account while being less conservative

than the widely used Covariance Intersection. We demonstrated the superiority of the pro-

posed method compared to Covariance Intersection with numerical examples and simulations

within the specific application of decentralized localization. A potential future direction, re-

cently suggested in [153], consists of dealing with measurements involving more than two

agents.

Fourthly, we considered the problem of estimating the orientations of a set of agents with

respect to a global reference frame, using only local bearing measurements. We identified

sufficient conditions for localizability, and proposed a distributed optimization approach to

estimate the unknown orientations, without any prior information. One of the goals of this

work was to propose an algorithm that is based on a minimum number of constraints. We

performed some preliminary tests using the bearings alone but the problem becomes ill-posed

(the Hessian of the objective loses rank); hence the inclusion of the normals is necessary.

Normals and binormals are generated by algebraically combining the real measurements

that we have available; hence, using all equal weights might not be the statistically most

efficient solution. A potential future direction consists of a deeper investigation of how the

constraints involving triple plane normals and binormals should be included in a statistically

optimal manner.

Finally, we proposed a novel parametrization of the trifocal tensor obtained from a quotient

Riemannian manifold. The contributions of the last chapter were twofold. First, we incor-

porated the state of the art techniques for optimization on manifolds in our parametrization

and second, we obtained a meaningful Riemannian distance between two trifocal tensors.
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One potential future direction could be the application of clustering algorithms on Rieman-

nian manifolds, such as mean shift [125], to the proposed manifold parametrization for the

purpose of robust estimation of the trifocal tensor from noisy samples. Another potential

application of the proposed parametrization could be in the problem of distributed image-

based localization of a camera sensor network [139, 138] using the obtained Riemannian

distance as an objective. In contrast to the essential matrix, the trifocal tensor provides

a relative scale between the two relative translations between three visual sensors. This

additional piece of information may improve the localization accuracy compared to utilizing

only pairwise information via the essential matrix.

Overall, we believe that the work presented herein could represent the basis for future re-

search in a number of topics in the disciplines of multi-agent systems, robotics and computer

vision.
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Appendix A

Closest partial doubly stochastic

matrix

In this section, we consider the problem of finding the closest partial doubly stochastic

matrix to a given matrix X0 ∈ Rm×n with m ≤ n, i.e.

minimize
X∈Rm×n

(1/2)‖X −X0‖2F

subject to X1 = 1, XT1 ≤ 1, X ≥ 0.

(A.1)

Problem (A.1) is equivalent to the following problem:

minimize
X,s

(1/2)‖X −X0‖2F

subject to X1 = 1, XT1 + s = 1,

X ≥ 0, s ≥ 0.

(A.2)

Let

f(X, s) = (1/2)‖X −X0‖2F , (A.3)
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with domain

domf = {(X, s) ∈ Rm×n × Rn : X1 = 1, XT1 + s = 1}. (A.4)

Then, problem (A.2) is equivalent to the following problem in ADMM standard form:

minimize
(X,s)∈domf,(Z,t)∈Rm×n×Rn

f(X, s) + I≥0(Z, t)

subject to X − Z = 0, s− t = 0,

(A.5)

where I≥0(Z, t) = 0 if Z ≥ 0 and t ≥ 0 and +∞ otherwise. Then, the ADMM iterations for

problem (A.5) are as follows:

(Xk+1, sk+1) = argmin
(X,s)∈domf

{
1

2
‖X −X0‖2F +

ρ

2
‖X − Zk + Uk‖2F +

ρ

2
‖s− tk + wk‖2F

}
,

(A.6)

Zk+1 := (Xk+1 + Uk)+, (A.7)

tk+1 := (sk+1 + wk)+, (A.8)

Uk+1 := Uk +Xk+1 − Zk+1, (A.9)

wk+1 := wk + sk+1 − tk+1. (A.10)

Finally, we will solve the first subproblem of the ADMM iterations which is an equality con-

strained convex quadratic optimization problem. The Lagrangian for the first subproblem

is given by

L(X, s, µ, ν) =
1

2
‖X −X0‖2F +

ρ

2
‖X − Zk + Uk‖2F +

ρ

2
‖s− tk + wk‖2F (A.11)

+ µT (1−X1) + νT (1−XT1− s). (A.12)
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The KKT conditions are given by

X = (1 + ρ)−1(X0 + ρ(Zk − Uk) + µ1T + 1νT ), (A.13)

s =
1

ρ
ν + tk − wk, (A.14)

X1 = 1, (A.15)

XT1 + s = 1. (A.16)

First, we eliminate X and s and obtain the following system of linear equation for the

multipliers µ, ν:

nµ+ 11T ν =
(

(1 + ρ)I − (X0 + ρ(Zk − Uk)
)

1

11Tµ+ (m+ 1 + ρ−1)ν = (1 + ρ)(1− tk + wk)− (X0 + ρ(Zk − Uk))T1.

(A.17)

The matrix  nI 11T

11T (m+ 1 + ρ−1)I


is always invertible and its inverse can be precomputed. The overall algorithm is summarized

below. We chose ρ = 1, εabs = 10−4. Its complexity is O(mn) flops per iteration.
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Algorithm 5 Closest partial doubly stochastic matrix.

Input: X0 ∈ Rm×n with m ≤ n.
Ouput: X: closest partial doubly stochastic matrix to X0.

repeat

Compute µk+1 and νk+1 by solving (A.17)

Xk+1 := (1 + ρ)−1
(
X0 + ρ(Zk − Uk) + µk+11T + 1(νk+1)T

)
sk+1 := ρ−1νk+1 + tk − wk

Zk+1 := (Xk+1 + Uk)+

tk+1 := (sk+1 + wk)+

Uk+1 := Uk +Xk+1 − Zk+1

wk+1 := wk + sk+1 − tk+1

Rk+1 := [(Xk+1 − Zk+1)T , sk+1 − tk+1]

Sk+1 := −ρ[(Zk+1 − Zk)T , tk+1 − tk]
k := k + 1

until ‖Rk+1‖F ≤
√
mnεabs and ‖Sk+1‖F ≤

√
mnεabs
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Appendix B

Proofs for Chapter 2

B.1 Proof of Proposition 2.4.2

The following proof is a generalization of the proof of [136] for the case of a function defined

not only on the edges of a graph but on the vertices as well. Let x = [xT1 · · · xTm]T and

v = [vT1 · · · vTm]T . Let φ̃(t)
.
= φ(x+ tv). Then,

d2

dt2
φ̃(t)

∣∣∣∣
t=0

= α
∑
i∈V

d2

dt2
φ̃i(t)

∣∣∣∣
t=0

+ β
∑
{i,j}∈E

d2

dt2
φ̃ij(t)

∣∣∣∣
t=0

(B.1)

≤ αµmax

∑
i∈V
‖vi‖22 + βνmax

∑
{i,j}∈E

(‖vi‖22 + ‖vj‖22) (B.2)

= αµmax‖v‖22 + βνmax

∑
i∈V
|Ni| ‖vi‖22 (B.3)

≤ (αµmax + βνmaxdmax(G)) ‖v‖22, (B.4)

and the proof is complete.
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Appendix C

Proofs for Chapter 4

C.1 Proof of Lemma 4.3.2

First, we need the following lemma

Lemma C.1.1. If X ∈ Dm,n then XTX � I.

Proof. First, observe that XTX1 = XT1 ≤ 1. By Gershgorin discs theorem [51], we

have that every eigenvalue λ of XTX must lie within at least one the Gershgorin discs

D((XTX)ii, Ri) where Ri =
∑

j 6=i(X
TX)ij ≤ 1 − (XTX)ii. Thus, no eigenvalue of XTX

can be larger than 1.

The Hessian of φi is computed as follows

Hessφi(Xi)[Ui] = Ui(X
T
i Xi − I) +Xi(X

T
i Ui + UTi Xi). (C.1)
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Let xTi denote the ith row of Xi and uTi the ith row of Ui. We have that

〈Ui,Hessφi(Xi)[Ui]〉 = −〈Ui, Ui〉+ 〈Ui, UiXT
i Xi〉+ 〈Ui, XiX

T
i Ui〉+ 〈Ui, XiU

T
i Xi〉 (C.2)

≤ 2〈Ui, Ui〉, (C.3)

since

〈Ui, XT
i XiUi〉 ≤ 〈Ui, Ui〉, (C.4)

〈Ui, UiXT
i Xi〉 =

m∑
i=1

uTi X
T
i Xiui ≤

m∑
i=1

uTi ui = 〈Ui, Ui〉, (C.5)

〈Ui, XiU
T
i Xi〉 =

m∑
i,j=1

uTi xjx
T
i uj ≤

m∑
i,j=1

(uTi xj)
2 =

m∑
i=1

uTi X
T
i Xiui ≤ 〈Ui, Ui〉. (C.6)

C.2 Proof of Lemma 4.3.3

The gradient of φij with respect to Xi and the gradient of φij with respect to Xj are given

by

gradXi φij(Xi, Xj) = (XiX
T
j − X̃ij)Xj , (C.7)

gradXj φij(Xi, Xj) = (XiX
T
j − X̃ij)

TXi. (C.8)

The corresponding differentials can be computed as follows

D gradXi φij(Xi, Xj)[(Ui, Uj)] = (XiX
T
j − X̃ij)Uj + (UiX

T
j +XiU

T
j )Xj , (C.9)

D gradXj φij(Xi, Xj)[(Ui, Uj)] = (XiX
T
j − X̃ij)

TUi + (UiX
T
j +XiU

T
j )TXi. (C.10)
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The corresponding Hessian is given by

〈(Ui, Uj),Hessφij(Xi, Xj))[(Ui, Uj)]〉 = 〈Ui, UiXT
j Xj〉+ 〈Uj , UjXT

i Xi〉+ 〈Ui, XT
i U

T
j Xj〉

+ 〈Uj , XjU
T
i Xi〉+ 2〈Ui, (XiX

T
j − X̃ij)Uj〉

(C.11)

As in C.1, we have 〈Ui, UiXT
j Xj〉 ≤ ‖Ui‖2F and 〈Uj , UjXT

i Xi〉 ≤ ‖Uj‖2F . Moreover, by

Gershgorin discs theorem [51] and by the assumptions on X̃ij , we have that the matrix

 0 XiX
T
j − X̃ij

(XiX
T
j − X̃ij)

T 0


cannot have an eigenvalue strictly greater than 1 and thus,

〈Ui, (XiX
T
j − X̃ij)Uj〉+ 〈Uj , (XiX

T
j − X̃ij)

TUi〉 ≤ ‖Ui‖2F + ‖Uj‖2F . (C.12)

Similarly, it can be seen that the matrix

 0 XT
i ⊗Xj

(XT
i ⊗Xj)

T 0


cannot have an eigenvalue strictly greater than 1 as well, and thus,

〈Ui, XT
i U

T
j Xj〉+ 〈Uj , XjU

T
i Xi〉 ≤ ‖Ui‖2F + ‖Uj‖2F . (C.13)

The desired result trivially follows.
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Appendix D

Proofs for Chapter 5

D.1 Proof of Lemma 5.3.3

First, we observe that any equilibrium (x,w, z) must satisfy z = z01 for some z0 ∈ R and

w = w01 for some w0 ∈ R since G is assumed to be connected. By Lemma 5.3.1, it follows

that z0 = 1− xTx and x0 = xTAx. Based on this observation and by (5.13), we obtain the

following equation for x:

(1− xTx)x− α(2− xTx)Ax+ α(xTAx)x = 0. (D.1)

Obviously, x = 0 satisfies (D.1). If x 6= 0, (D.1) implies

(1− xTx)xT (I − 2αA)x = 0. (D.2)

For such that I − 2αA � 0, it follows that

xTx = 1, and (xTAx)x = Ax, (D.3)

which shows that x is a unit-norm eigenvector of A.
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D.2 Proof of Theorem 5.3.4

First, we need the following lemma.

Lemma D.2.1. Let α, β > 0 and define the matrix Pα,β by

Pα,β
.
=

 L(G) αL(G)

αL(G) βL(G)2

 , (D.4)

where α, β > 0 satisfy βλ2(L(G)) > α2. Then, Pα,β � 0, rank(Pα,β) = 2n− 2 and

null(Pα,β) = span


1

0

 ,
0

1


 . (D.5)

Proof. By Schur complement, we have

 L(G) αL(G)

αL(G) βL(G)2

 � 0, (D.6)

if and only if βL(G)2 − α2L(G)L(G)†L(G) � 0. Thus, the bound βλ2(L(G)) > α2 follows.

Since L(G)1 = 0, it follows that [1T0T ]T and [0T1T ]T are in the nullspace of Pα,β . Moreover,

we will show that the span of these two vectors is exactly the nullspace of Pα,β . Let v1 =

(1/
√
n)1 and v2, . . . , vn ⊥ 1 be the eigenvectors of the Laplacian matrix L(G). Any vector

x ∈ R2n can be written as x =
∑n

i=1

ci1vi
ci2vi

 for some scalars {ci1, ci2}ni=1. We have that

xTPα,βx =

n∑
i=1

λi

ci1
ci2


T 1 α

α βλi


ci1
ci2

 . (D.7)

If any of {ci1, ci2}ni=2 is not 0, then xTPα,βx > 0 and thus, x /∈ null(Pα,β).

Lemma D.2.2. The function φ1 is nonincreasing along the trajectories of the system.
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Proof. We compute the time derivative of the function φ1(x, z, w) as defined in (5.20) along

the trajectories of our dynamical system as follows:

φ̇1 = −

z
w


T  L(G) αL(G)

αL(G) βL(G)2


z
w

− 2n‖ẋ‖22 ≤ 0, (D.8)

since Pα,β � 0 for α, β satisfying eqs. (5.15) and (5.19).

Next, we find all (x, z, w) for which φ̇1(x, z, w) = 0.

Lemma D.2.3. Given α, β satisfying (5.15) and (5.19), we have that φ̇1(x, z, w) = 0 if and

only if (x, z, w) is an equilibrium.

Proof. We have that φ̇1(x, z, w) = 0 implies

z
w


T

Pα,β

z
w

 = 0, (D.9)

which, based on Lemma D.2.1, implies that z = (1 − xTx)1 and w = xTAx1. Finally, it

is easy to see that the set of points (x, z, w) such that φ̇1(x, z, w) coincides with the set of

equilibria of the dynamical system at hand.

Next, we prove a lemma which intuitively says that the trajectories of the system cannot

escape to infinity while the value of the potential is nonincreasing.

Lemma D.2.4. We have that

‖(x(t), z(t), w(t))‖2 →∞⇒ φ1(x(t), z(t), w(t))→∞. (D.10)

Moreover, for all initial conditions x(0) ∈ Rn we have

φ1(x(t), z(t), w(t)) > −∞, ∀t ≥ 0. (D.11)

146



Proof. First, we prove the second part. We proceed by contradiction. Assume that there

is a trajectory (x(t), z(t), w(t)) such that φ1(x(t), z(t), w(t)) → −∞. Let z̃ .
= z − z1 and

w̃
.
= w−w1 where z denotes the average value of the components of vector z. We have that

φ1 = φ1 + φ̃1, where

φ1 =
n

2
z2 + αn(z + 1)w =

n

2
((1− ‖x‖2)2 + 2αn(2− ‖x‖2)xTAx), (D.12)

φ̃1 =
1

2

 z̃
w̃


T  I αI

αI βL(G)


 z̃
w̃

 . (D.13)

Observe that φ̃1 ≥ 0 since

 z̃
w̃


T  I αI

αI βL(G)


 z̃
w̃

 =

 z̃
w̃


T  I αI

αI β(L(G) + 1
n11T )


 z̃
w̃

 , (D.14)

and by Schur complement,

 I αI

αI β(L(G) + 1
n11T )

 � 0 iff β(L(G) +
1

n
11T ) � α2I, (D.15)

which is the case here. Therefore, it suffices to show that φ1 > −∞. For φ1 → −∞, we

must have ‖x‖2 →∞. But as ‖x‖2 →∞,

φ1/‖x‖42 →
n

2

xT (I − 2αA)x

xTx
> 0, (D.16)

and thus, ‖x‖2 →∞ implies φ1 → +∞ since I − 2αA � 0.

Regarding the first part, observe that ‖(z̃, w̃)‖2 →∞ implies φ̃1 →∞. Combining this ob-

servation with (D.16), we deduce that ‖(x(t), z(t), w(t))‖2 →∞ implies φ1(x(t), z(t), w(t))→

∞.

Lemmata D.2.2, D.2.3 and D.2.4, imply part (i) of Theorem 5.3.4. Next, we prove parts (ii)
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and (iii). Let λ1 < λ2 < · · · < λn be the eigenvalues of A and v1, v2, . . . , vn the associated

unit-norm eigenvectors. We consider the case

(x0, z0, w0) = (vk,0, λk1), (D.17)

for some k ∈ {2, . . . , n}. To show that x0 is unstable, we use Chetaev’s theorem ([62] page

125). We consider the infinitesimal perturbation of (x0, z0, w0) as follows

x = x0 + dx = vk ± εv1, (D.18)

z = z0 − dx� dx = −ε2nv1 � v1, (D.19)

w = w0 + dx� (Adx) = λk1 + ε2nλ1v1 � v1, (D.20)

where ε is an arbitrarily small positive constant. Then,

φ1(x, z, w) = φ1(x0, z0, w0)− ε2αn(λk − λ1) +O(ε4). (D.21)

Since λk − λ1 > 0, (D.21) implies that for sufficiently small ε > 0, we have

φ1(x, z, w) < φ1(x0, z0, w0). (D.22)

The remainder of the proof is an application of Chetaev’s theorem. Specifically, we consider

the Lyapunov function

V1(x, z, w) = φ1(x0, z0, w0)− φ1(x, z, w). (D.23)

Then, V1(x0, z0, w0) = 0 and by (D.22), V1(x, z, w) > 0 for some (x, z, w) arbitrarily close

to (x0, z0, w0). We define the set

Ωx0,r = {(x, z, w) ∈ Rn ×Rn ×Rn | ‖(x, z, w)− (x0, z0, w0)‖2 < r, V1(x, z, w) > 0}, (D.24)
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which is nonempty and V̇1(x, z, w) = −φ̇1(x, z, w) > 0 for all (x, z, w) ∈ Ωx0,r for suffi-

ciently small r > 0. Then, all the conditions of Chetaev’s theorem are satisfied. and we

conclude that (x0, z0, w0) is unstable. Intuitively, Chetaev’s theorem tells us that the tra-

jectories of the system will exit a ball of radius r centered at (x0, z0, w0) when started in

Ωx0,r. Let (xr, zr, wr) be the point of exit on this ball and tr > 0 be the time of exit.

Then, since φ1 is nonincreasing along the trajectories of the system, (x(t), z(t), w(t)) ∈

{(x, z, w) | φ1(x, z, w) ≤ φ1(xr, zr, wr)} for all t ≥ tr, which does not include a ball of radius

ε > 0 centered at (x0, z0, w0) for sufficiently small ε > 0. Thus, (x0, z0, w0) is not attractive

either.

It remains to consider the case

(x0, z0, w0) = (0,1,0). (D.25)

We consider the infinitesimal perturbation of (x0, z0, w0) as follows

x = x0 + dx = ±εv1, (D.26)

z = z0 − dx� dx = 1− ε2nv1 � v1, (D.27)

w = w0 + dx� (Adx) = ε2nλ1v1 � v1, (D.28)

where ε is an arbitrarily small positive constant. Then,

φ1(x, z, w) = φ1(x0, z0, w0)− ε2n(1− 2αλ1) +O(ε4). (D.29)

Since I − 2αA � 0, (D.29) implies that for sufficiently small ε > 0, we have

φ1(x, z, w) < φ1(x0, z0, w0). (D.30)

The remainder of the proof is exactly analogous.
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D.3 Proof of Lemma 5.4.2

As in the proof of Lemma D.2.3, it is easy to see that given that G is connected, (Ẋ, Ż, Ẇ ) =

0 implies Zi = I −XTX and Wi = XTAX for all i = 1, 2, . . . , n. Then, we must have

X(I −XTX) + αXXTAX − αAX(2I −XTX) = 0. (D.31)

By left-multiplying with XT and after some manipulations, we obtain

(I −XTX)XTBαX +XTBαX(I −XTX) = 0, (D.32)

where Bα
.
= I − 2αA � 0. Let X = UΣQT be an SVD of X. Let q1, . . . , qk ∈ Rk be the

columns of Q. Multiplying (D.32) by qTi on the left by qi on the right we obtain

σ2
i (σ

2
i − 1)(UTBαU)ii = 0. (D.33)

Since UTBαU � 0, it follows that (UTBαU)ii > 0 and thus, σi is either 0 or 1. Finally,

(5.32) can be easily obtained from (D.31) by observing that X = XXTX.

D.4 Proof of Theorem 5.4.4

The time derivative of the potential function φ2 as defined in (5.34) is given by:

φ̇2 = − tr

[Z
W

]T
(Pα,β ⊗ Ik)

[
Z

W

]− 2n
n∑
i=1

‖Ẋi‖2F ≤ 0, (D.34)

where Pα,β as defined in (D.4). Thus, φ2 is nonincreasing along the trajectories of the system

at hand. Then, similarly to the k = 1 case, φ̇2(X,Z,W ) = 0 if and only if (X,Z,W ) is an
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equilibrium. In addition, we have that

‖(X(t), Z(t),W (t))‖F →∞⇒ φ2(X(t), Z(t),W (t))→∞, (D.35)

and for all initial conditions {Xi(0)}ni=1 and for all t ≥ 0, we have that

φ2(X(t), Z(t),W (t)) > −∞.

We conclude that the trajectories of the system asymptotically approach some set of equi-

libria. So, part (i) has been proved.

Now, we prove parts (ii) and (iii). First, we consider the case where φ̇2(X0, Z0,W0) = 0 and

X has at least one singular value equal to 0, that is,

X0 = UQT =
r∑
i=1

uiq
T
i , r < k. (D.36)

Let dX = ±εur+1q
T
r+1, where ur+1 ∈ Rm is a unit-norm vector perpendicular to span({ui}ri=1)

and qr+1 ∈ Rk is a unit-norm vector perpendicular to span({qi}ri=1). We infinitesimally per-

turb (X0, Z0,W0) as follows:

X = X0 + dX = X ± εur+1q
T
r+1, (D.37)

Zi = Z0i − ndXT
i dXi, (D.38)

Zi = W0i + ndXT
i A

T
i dXi. (D.39)

Then, we have that

φ2(X,Z,W )− φ2(X0, Z0,W0) = −ε2nuTr+1(I − 2αA)ur+1 +O(ε4). (D.40)
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Since I − 2αA � 0, we get that for sufficiently small ε > 0,

φ2(X,Z,W ) < φ2(X0, Z0,W0). (D.41)

Let ΘX0 denote the closed connected set of equilibria that contains (X0, Z0,W0). Observe

that ΘX0 is a closed invariant set for our system and its definition depends only on X0. We

consider the function

V2(X,Z,W ) = φ2(X0, Z0,W0)− φ2(X,Z,W ). (D.42)

Then, V2(X0, Z0,W0) = 0 and by (D.22), V2(X,Z,W ) > 0 for some (X,Z,W ) arbitrarily

close to (X0, Z0,W0). We define the set

ΩX0,r = {(X,Z,W ) |dist((X,Z,W ),ΘX0) < r, V2(X,Z,W ) > 0}, (D.43)

which is nonempty and V̇2(X,Z,W ) > 0 for all (X,Z,W ) ∈ Ω0,r for sufficiently small

r > 0. With a reasoning exactly as in the proof of Chetaev’s theorem ([62] page 125), the

trajectories (X(t), Z(t),W (t)) that start in ΩX0,r must eventually leave ΩX0,r through the

set

{(X,Z,W ) |dist((X,Z,W ),ΘX0) = r, V2(X,Z,W ) > 0}. (D.44)

We conclude that ΘX0 is a uniformly unstable set of equilibria, which roughly means

from arbitrarily close to any point of ΘX0 , the trajectories of the system escape the set

{(X,Z,W ) |dist((X,Z,W ),ΘX0) < r} for some sufficiently small r > 0. Let (Xr, Zr,Wr)

be the point of exit and tr > 0 be the time of exit. Then, since φ2 is nonincreasing along

the trajectories of the system, it follows that

(X(t), Z(t),W (t)) ∈ {(X,Z,W ) | φ2(X,Z,W ) ≤ φ2(Xr, Zr,Wr)}, (D.45)
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for all t ≥ tr, which does not include the set

{(X,Z,W ) | dist((X,Z,W ),ΘX0) < ε}, (D.46)

for sufficiently small ε > 0. Thus, ΘX0 is (uniformly) non-attractive.

Next, we consider the case XT
0 X0 = I. We have that (D.31) implies, in this case, that

AX0 = X0X
T
0 AX0, (D.47)

which shows that span(X0) is an invariant subspace of A Since X0 has orthogonal columns,

it follows that X0 = UQ for some arbitrary k×k orthogonal matrix Q, and U has as columns

some unit-norm eigenvectors of A. Consider the case when some column of U is not equal

to an eigenvector of A associated with one of the smallest k eigenvalues. Without loss of

generality, assume that this column is the first and let l ∈ {1, 2, . . . , k} such that vl is not a

column of U . Let

dX = ±ε
[
vl 0 · · · 0

]
Q, (D.48)

for some small positive scalar ε. We infinitesimally perturb (X0, Z0,W0) as follows:

X = X0 + dX, (D.49)

Zi = Z0i − ndXT
i dXi, (D.50)

Zi = W0i + ndXT
i A

T
i dXi. (D.51)

Then, we have that

φ2(X,Z,W )− φ2(X0, Z0,W0) = −ε2αn(λk − λ1) +O(ε4). (D.52)

Thus, for sufficiently small ε > 0,

φ2(X,Z,W ) < φ2(X0, Z0,W0). (D.53)
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The remainder of the proof is as in the previous case.
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Appendix E

Proofs for Chapter 6

E.1 Proof of Lemma 6.2.6

Equation (6.9) implies that for any vector x, we have

 x

−x


T Σxx Σxy

ΣT
xy Σyy


 x

−x

 ≥ 0 (E.1)

or equivalently

xT (Σxx + Σyy − 2Σxy)x ≥ 0. (E.2)

The desired result trivially follows.
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E.2 Problems with linear objective and spectral norm con-

straints

In this section, we consider convex optimization problems of the form:

maximize
X∈Rn×n

2 tr(CTX)

subject to XTX � I.
(E.3)

Let Z be the dual variable associated with the inequality XTX − I � 0. The Lagrangian

for problem (E.3) is

L(X,Z) = −2 tr(CTX) + tr(Z(XTX − I)). (E.4)

The Karush-Kuhn-Tucker (KKT) conditions for problem (E.3) are:

XTX − I � 0, (E.5)

Z � 0, (E.6)

Z(XTX − I) = 0, (E.7)

XZ = C. (E.8)

For a primal-dual optimal pair (X,Z), we have that ZXTX = Z and XZ = C imply

Z2 = CTC. (E.9)

Now, let C = UΣV T be an SVD for C. Equation (E.9) can be equivalently rewritten as

Z2 = V Σ2V T . (E.10)

It can be easily seen that (X?, Z?) = (UV T , V ΣV T ) is a primal-dual optimal pair for (E.3)
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and the optimal value of (E.3) is p? = 2‖C‖?.

E.3 Proof of Proposition 6.3.1

Let f̃(K)
.
= tr(Σ+

xx) for a fixed Σxy satisfying (6.9). The Hessian of f̃ can be computed by

Hess f̃(K)[U,U ] = tr(USUT ) = uT (I ⊗ S)u, (E.11)

where u = vec(U), and

S =

[
C D

]Σxx Σxy

ΣT
xy Σyy


CT
DT

+ Ση � 0. (E.12)

It follows that the Hessian of f̃ is positive semidefinite. Thus, for a fixed Σxy satisfying (6.9)

tr(Σ+
xx) is convex in K. The remainder of the proof is straightforward.

E.4 Proof of Lemma 6.3.2

First, it is easy to see that if E[x̃] = x, E[ỹ] = y and E[η] = 0 then E[x̃+] = E[x̃] = x. Now,

one has to show that if Σxx � Σ̃xx and Σyy � Σ̃yy then tr(Σ+?
xx ) ≥ tr(Σ̃xx). We have that

Σ+?
xx − Σ̃xx � −K?D(Σ?T

xy − Σ̃T
xy)(I − CTK?T )− (I −K?C)(Σ?

xy − Σ̃xy)D
TK?T , (E.13)

since Σxx � Σ̃xx, Σyy � Σ̃yy and Ση � 0. Since trace is Sn+-nondecreasing, we get

tr(Σ+?
xx − Σ̃xx) ≥ −2 tr

(
(I −K?C)(Σ?

xy − Σ̃xy)D
TK?T

)
≥ 0, (E.14)

since Σ?
xy is optimal over all Σxy satisfying (6.9). Verifying that Σ̃xy satisfies (6.9) is straight-

forward. The proof is complete.
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E.5 Computing the Newton step

First of all, the differential of f1(Q) at the direction of ∆Q is given by

Df1(Q)[∆Q] = Σ−1/2
yy

(
∆QTΣ−1

xxQ+QTΣ−1
xx∆Q

)
Σ−1/2
yy . (E.15)

For small ∆X, we have the first order approximation [18]:

log det(X + ∆X) ≈ log det(X) + tr(X−1∆X) (E.16)

and thus, using the chain rule, we obtain

gradQ log det(−f1(Q)) = 2Σ−1
xxQΣ−1/2

yy f1(Q)−1Σ−1/2
yy . (E.17)

The gradient of f with respect to X first, and then, with respect to Q can be computed as

follows:

gradX f(X,Q) = 2

[C D

]Σxx Q

QT Σyy


CT
DT

+ Ση

X − 2(CΣxx +DQT ),

gradQ f(X,Q) = 2(CTXXTD −XTD).

(E.18)

Let g1(Q)
.
= Σ

−1/2
yy f1(Q)−1Σ

−1/2
yy . Using (X + ∆X)−1 ≈ X−1 −X−1∆XX−1 for small ∆X

and the chain rule, we obtain the following system of linear equations for the Newton step

(∆Xnt,∆Qnt):

[C D

]Σxx Q

QT Σyy


CT
DT

+ Ση

∆Xnt + (C∆QntD
TX −D∆QTnt(I − CTX))

= − 1

2t
gradX ft(X,Q),

(E.19)
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and

2t(CT∆XntX
TD − (I − CTX)∆XT

ntD)

−2Σ−1
xxQg1(Q)

(
∆QTntΣ

−1
xxQ+QTΣ−1

xx∆Qnt
)
g1(Q) + 2Σ−1

xx∆Qntg1(Q) = − gradQ ft(X,Q).

(E.20)
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Appendix F

Proofs for Chapter 7

F.1 Proof of Lemma 7.5.4

First, we compute an upper bound on the maximum eigenvalue of the Hessian of the objec-

tive. The Hessian of the pairwise potential ϕij can be computed as follows. Let (Ri(t), Rj(t))

be a geodesic of SO(3)× SO(3). By differentiating once with respect to time t, we obtain

ϕ̇ij(t) = tr(Ṙi(t)MijRj(t)
T ) + tr(Ri(t)MijṘj(t)

T ). (F.1)

Differentiating once more with respect to t, we obtain

ϕ̈ij(t) = tr(R̈i(t)MijRj(t)
T ) + tr(Ri(t)MijR̈j(t)

T )

+ tr(Ṙi(t)
T Ṙj(t)Mji) + tr(Ṙj(t)

T Ṙi(t)Mij).
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Let Pij
.
= RiMijR

T
j . At t = 0, we have that

ϕ̈ij(0) =

vec
(
Ṙi(0)

)
vec
(
Ṙj(0)

)

T Hii Hij

Hji Hjj


︸ ︷︷ ︸

Hij

vec
(
Ṙi(0)

)
vec
(
Ṙj(0)

)
 (F.2)

where Hii = Hjj = − sym(Pij) and Hij = HT
ji = Pij . Using the fact that vectors in (7.23)

form orthonormal bases, each summand in (7.23) can be interpreted as a Singular Value

Decomposition (SVD) with singular values wt, wc, wb. Combining this with the Gershgorin

circle theorem, the maximum eigenvalue of Hij , denoted by λmax(Hij) cannot exceed 2wmax.

Therefore,

ϕ̈ij(0) ≤ 4wmax(‖Ṙi(0)‖2 + ‖Ṙj(0)‖2). (F.3)

Now, let R(t) = (R1(t), . . . , RN (t)) be a geodesic on SO(3)N and let ϕ(t)
.
= ϕ({Ri(t)}Ni=1).

At t = 0, we have

ϕ̈(0)=
∑
{i,j}∈E

ϕ̈ij(0) ≤
∑
{i,j}∈E

4wmax

(
‖Ṙi(0)‖2 + ‖Ṙj(0)‖2

)
≤ 4wmaxdmax‖Ṙ(0)‖2, (F.4)

which shows that the maximum eigenvalue of the Hessian of ϕ cannot exceed 4dmaxwmax in

any point of its domain.

F.2 Closest rotation matrix

In this section, we consider the problem of estimating the closest rotation matrix to a given

3× 3 matrix R0 in the squared Frobenius norm sense, that is

minimize
R∈SO(3)

‖R0 −R‖2F . (F.5)
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Problem (F.5) is equivalent to minimizing − tr(RT0 R) over SO(3). Let f : SO(3) → R

defined by f(R) = − tr(RT0 R). The Riemannian gradient of f(R) can be computed by

grad f(R) = −2R skew(RTR0). All critical points of f must satisfy skew(RTR0) = 0 or

equivalently

RTR0 = RT0 R. (F.6)

Let R0 = UΣV T be an SVD of R0. Then, condition (F.6) can be equivalently written as

Σ = UTRV ΣUTRV. (F.7)

Without loss of generality, assume that R0 has distinct singular values σ1 > σ2 > σ3 ≥ 0.

In this case, it can be easily seen that (F.7) is satisfied if and only if R = UJV T for some

diagonal J that is a square root of the identity, that is J2 = I. If det(UV T ) = 1, then the

smallest possible value of f , equal to −(σ1 + σ2 + σ3), out of the possible critical points

is achieved for R = UV T . If det(UV T ) = −1, the smallest possible value of f out of the

possible critical points is −(σ1+σ2−σ3) and is attained at R = U diag(1, 1,−1)V T . Overall,

if R0 = UΣV T is an SVD for R0, then the optimal solution of (F.5) is given by

R? = U diag(1, 1, det(UV T ))V T . (F.8)
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Appendix G

Proofs for Chapter 8

G.1 Proof of Proposition 8.3.3

Let (R1, R2, R3, (T12, T13)) ∈ SO(3)3 × S3∗
2 . We will determine when

(R1, R2, R3, (T12, T13)) ∼ (S1R1, S2R2, S3R3, (U12, U13)), (G.1)

for S1, S2, S3 ∈ SO(3) and (U12, U13) ∈ S3∗
2 . By definition of the equivalence relation “ ∼ ”,

we have that (G.1) holds if and only if

RT2 T12e
T
i R

T
1 R3 −RT2 R1eiT

T
13R3 =

sRT2 S
T
2 U12e

T
i R

T
1 S

T
1 S3R3 − sRT2 ST2 S1R1eiU

T
13S3R3,

(G.2)

where s ∈ {−1,+1}. The sign s corresponds to the fact that if T is a valid trifocal tensor

then −T is a valid trifocal tensor too.

According to Theorem 2 of [145], given a trifocal tensor T , there is only one choice of
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R,S ∈ SO(3) and T,U ∈ R3 such that T can be written as

Ti = TSTi −RiU, (G.3)

for i ∈ {1, 2, 3}, where Ri and Si denote the i-th column of R and S respectively. However,

since −T is also a valid trifocal tensor, it follows that −U and −T are also valid solutions.

Thus, R,S can be uniquely determined and U, T can be determined up to a (common) sign

flip. Using this theorem, we get S1 = S2 = S3 = S for some S ∈ SO(3) and

(U12, U13) = ±(ST12, ST13). (G.4)

Now, since T12, T13 are assumed to be non-colinear, they form a basis for the z = 0 plane.

If we write the standard basis vectors e1 and e2 as a linear combination of T12 and T13, we

get

(Se1)3 = (Se2)3 = 0. (G.5)

Furthermore, eT3 (U12×U13) > 0 and eT3 (T12× T13) > 0 imply eT3 Se3 > 0. We conclude that

S should be of the form

S =


cos(θ) − sin(θ) 0

− sin(θ) − cos(θ) 0

0 0 1

 = Rz(θ). (G.6)

We conclude that

(R1, R2, R3, T12, T13) ∼ (Q1, Q2, Q3, U12, U13), (G.7)
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implies

Qi = Rz(θ)Ri, U = Rz(θ)T, (G.8)

Qi = Rz(θ)Ri, U = Rz(θ)Rz(π)T, (G.9)

for i ∈ {1, 2, 3}, where U = (U12, U13) and T = (T12, T13). It can be trivially verified that

the above condition is also sufficient.

G.2 Proof of Proposition 8.4.4

The proof that follows is based on the proof of [1] (page 44) for the real projective space.

Let f :M T→ R be an arbitrary smooth function and define f = f ◦π :MT → R. Consider

the function g :MT →MT defined by g(X) = RX, where R ∈ Hz ×Hxπ is arbitrary but

constant. Clearly, f(g(X)) = f(X) for all X. By taking the differential of both sides we

obtain

Df(g(X))[Dg(X)[ξX ]] = Df(X)[ξX ], (G.10)

where ξX ∈ TXMT is the horizontal lift at X of a tangent vector ξ ∈ T[X]M T. By the

definition of horizontal lifts, we have

Df(X)[ξX ] = Df(π(X))[ξ]. (G.11)

Combing equations (G.10) and (G.11) with the fact Dg(X)[ξ] = Rξ, we obtain

Df(RX)[RξX ] = Df(X)[ξX ] = Df(π(RX))[ξ], (G.12)

since π(RX) = π(X). This, since it is true for any smooth function f , implies that

Dπ(RX)[RξX ] = ξ.

Finally, it remains to show that RξX is an element of HRX given that ξX ∈ HX . First, we
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will show that RξX ∈ TRXMT . Let X = (R1, R2, R3, T ). Since ξX is tangent vector of

MT , it is of the form

ξX = (R1Ω1, R2Ω2, R3Ω3, ζ4), (G.13)

for some Ωi ∈ so(3) and ζ4 ∈ T⊥. Moreover, RξX is of the form

RξX = (RR1Ω1, RR2Ω2, RR3Ω3, Rζ4), (G.14)

which clearly belongs to the tangent space TRXMT . Finally, RξX is a horizontal vector

since

g(RξX , êzRX) = g(ξX , R
T êzRX) = g(ξX , êzX) = 0, (G.15)

where we used that RT êzR = êz for any R ∈ Hz ×Hxπ. Since Dπ(RX)[RξX ] = ξ and RξX

is an element of HRX , we conclude that RξX is the horizontal lift of ξ at RX, i.e.

ξRX = RξX . (G.16)

G.3 Proof of Proposition 8.4.7

Let X = (R1, R2, R3, T ) ∈ MT and corresponding tangent vector ξ = (ξ1, ξ2, ξ3, ξ4) ∈

TXMT . Furthermore, assume that ξ = γ̇X,ξ(0) ∈ HX . It follows that ξi ⊥ êzRi for

i = 1, 2, 3 and ξ4 ⊥ êzT .

For the rotational components, recall that γRi,ξi(t) = Ri expI(tR
T
i ξi) and γ̇Ri,ξi(t) = ξi expI(tR

T
i ξi)

where expI denotes the usual matrix exponential. Thus, we get

tr
(
γ̇Ri,ξi(t)

T (êzγRi,ξi(t))
)

= tr
(
ξTi êzRi

)
= 0. (G.17)
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Similarly, for the component T ∈ S3
2, recall that

γT,ξ4(t) = T cos(‖ξ4‖t) +
ξ4

‖ξ4‖
sin(‖ξ4‖t), (G.18)

γ̇T,ξ4(t) = −T‖ξ4‖ sin(‖ξ4‖t) + ξ4 cos(‖ξ4‖t). (G.19)

It can be easily seen that

tr(γ̇T,ξ4(t))T êzγT,ξ4(t)) = 0, (G.20)

since T ⊥ êzT , ξ4 ⊥ êzξ4 and ξ4 ⊥ êzT . As a conclusion, γ̇X,ξ(t) is perpendicular to the

vertical space VγX,ξ(t) for all t. Thus, γ̇X,ξ(t) ∈ HγX,ξ(t) for all t, as desired.

G.4 Derivation of Riemannian gradient

Let X(t) be a geodesic curve of the form X(t) = (R1(t), R2(t), R3(t), T (t)). Let T (t)
.
=

T (X(t)). The tangent of T (t) is given by

Ṫi = RT2 (T12e
T
i Ṙ

T
1 − Ṙ1eiT

T
13)R3 + ṘT2 R2Ti + TiRT3 Ṙ3 +RT2 (Ṫ12e

T
i R1 −R1eiṪ

T
13)R3,

(G.21)

for i = 1, 2, 3. Now, consider the function fMT (X(t)) = f(T (t)). At t = 0, we have

g
(
Ẋ, grad fMT (X)

)
= 〈Ṫ , grad f(T )〉, (G.22)

where 〈·, ·〉 denotes the usual Euclidean inner product. To alleviate the notation, let

G = grad f(T ) ∈ R3×3×3 and let Gi be i-th slice of G for i = 1, 2, 3. Then 〈Ṫ , G〉 =
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∑3
i=1 tr

(
GTi Ṫi

)
and

tr
(
GTi Ṫi

)
= tr

(
ṘT1 (R3G

T
i R

T
2 T12e

T
i −R2GiR

T
3 T13e

T
i )
)

+ tr
(
ṘT2 R2TiGTi

)
+ tr

(
ṘT3 R3T Ti Gi

)
(G.23)

+ tr
(
Ṫ T12R2GiR

T
3 R1ei

)
− tr

(
Ṫ T13R3G

T
i R

T
2 R1ei

)
. (G.24)

Since the manifoldMT is a submanifold of a Euclidean space, it follows that any Euclidean

vector ζ ∈ TXMT can be uniquely orthogonally decomposed as ζ = ζ ′+ζ ′′ with ζ ′ ∈ TXMT

and ζ ′′ ∈ (TXMT )⊥. Hence 〈ξ, ζ〉 = 〈ξ, ζ ′〉 for any ξ ∈ TXMT . Using this fact, the provided

formulas easily follows.
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