994 research outputs found

    Next challenges for adaptive learning systems

    Get PDF
    Learning from evolving streaming data has become a 'hot' research topic in the last decade and many adaptive learning algorithms have been developed. This research was stimulated by rapidly growing amounts of industrial, transactional, sensor and other business data that arrives in real time and needs to be mined in real time. Under such circumstances, constant manual adjustment of models is in-efficient and with increasing amounts of data is becoming infeasible. Nevertheless, adaptive learning models are still rarely employed in business applications in practice. In the light of rapidly growing structurally rich 'big data', new generation of parallel computing solutions and cloud computing services as well as recent advances in portable computing devices, this article aims to identify the current key research directions to be taken to bring the adaptive learning closer to application needs. We identify six forthcoming challenges in designing and building adaptive learning (pre-diction) systems: making adaptive systems scalable, dealing with realistic data, improving usability and trust, integrat-ing expert knowledge, taking into account various application needs, and moving from adaptive algorithms towards adaptive tools. Those challenges are critical for the evolving stream settings, as the process of model building needs to be fully automated and continuous.</jats:p

    Lifelong Sequential Modeling with Personalized Memorization for User Response Prediction

    Full text link
    User response prediction, which models the user preference w.r.t. the presented items, plays a key role in online services. With two-decade rapid development, nowadays the cumulated user behavior sequences on mature Internet service platforms have become extremely long since the user's first registration. Each user not only has intrinsic tastes, but also keeps changing her personal interests during lifetime. Hence, it is challenging to handle such lifelong sequential modeling for each individual user. Existing methodologies for sequential modeling are only capable of dealing with relatively recent user behaviors, which leaves huge space for modeling long-term especially lifelong sequential patterns to facilitate user modeling. Moreover, one user's behavior may be accounted for various previous behaviors within her whole online activity history, i.e., long-term dependency with multi-scale sequential patterns. In order to tackle these challenges, in this paper, we propose a Hierarchical Periodic Memory Network for lifelong sequential modeling with personalized memorization of sequential patterns for each user. The model also adopts a hierarchical and periodical updating mechanism to capture multi-scale sequential patterns of user interests while supporting the evolving user behavior logs. The experimental results over three large-scale real-world datasets have demonstrated the advantages of our proposed model with significant improvement in user response prediction performance against the state-of-the-arts.Comment: SIGIR 2019. Reproducible codes and datasets: https://github.com/alimamarankgroup/HPM

    A Survey on Concept Drift Adaptation

    Get PDF
    Concept drift primarily refers to an online supervised learning scenario when the relation between the in- put data and the target variable changes over time. Assuming a general knowledge of supervised learning in this paper we characterize adaptive learning process, categorize existing strategies for handling concept drift, discuss the most representative, distinct and popular techniques and algorithms, discuss evaluation methodology of adaptive algorithms, and present a set of illustrative applications. This introduction to the concept drift adaptation presents the state of the art techniques and a collection of benchmarks for re- searchers, industry analysts and practitioners. The survey aims at covering the different facets of concept drift in an integrated way to reflect on the existing scattered state-of-the-art

    Concept drift from 1980 to 2020: a comprehensive bibliometric analysis with future research insight

    Get PDF
    In nonstationary environments, high-dimensional data streams have been generated unceasingly where the underlying distribution of the training and target data may change over time. These drifts are labeled as concept drift in the literature. Learning from evolving data streams demands adaptive or evolving approaches to handle concept drifts, which is a brand-new research affair. In this effort, a wide-ranging comparative analysis of concept drift is represented to highlight state-of-the-art approaches, embracing the last four decades, namely from 1980 to 2020. Considering the scope and discipline; the core collection of the Web of Science database is regarded as the basis of this study, and 1,564 publications related to concept drift are retrieved. As a result of the classification and feature analysis of valid literature data, the bibliometric indicators are revealed at the levels of countries/regions, institutions, and authors. The overall analyses, respecting the publications, citations, and cooperation of networks, are unveiled not only the highly authoritative publications but also the most prolific institutions, influential authors, dynamic networks, etc. Furthermore, deep analyses including text mining such as; the burst detection analysis, co-occurrence analysis, timeline view analysis, and bibliographic coupling analysis are conducted to disclose the current challenges and future research directions. This paper contributes as a remarkable reference for invaluable further research of concept drift, which enlightens the emerging/trend topics, and the possible research directions with several graphs, visualized by using the VOS viewer and Cite Space software

    Automated Recommender Systems

    Get PDF
    Recommender systems have been existing accompanying by web development, driving personalized experience for billions of users. They play a vital role in the information retrieval process, overcome the information overload by facilitating the communication between business people and the public, and boost the business world. Powered by the advances of machine learning techniques, modern recommender systems enable tremendous automation on the data preprocessing, information distillations, and contextual inferences. It allows us to mine patterns and relationships from massive datasets and various data resources to make inferences. Moreover, the fast evolvement of deep learning techniques brings vast vitality and improvements dived in both academic research and industry applications. Despite the prominence achieved in the recent recommender systems, the automation they have been achieved is still limited in a narrow scope. On the one hand, beyond the static setting, real-world recommendation tasks are often imbued with high-velocity streaming data. On the other hand, with the increasing complexity of model structure and system architecture, the handcrafted design and tuning process is becoming increasingly complicated and time-consuming. With these challenges in mind, this dissertation aims to enable advanced automation in recommender systems. In particular, we discuss how to update factorization-based recommendation models adaptively and how to automatically design and tune recommendation models with automated machine learning techniques. Four main contributions are made via tackling the challenges: (1) The first contribution of this research dissertation is the development of a tensor-based algorithm for streaming recommendation tasks. (2) As deep learning techniques have shown their superiority in recommendation tasks and become dominant in both academia and industry applications, the second contribution is exploring and developing advanced deep learning algorithms to tackle the recommendation problem with the streaming dataset. (3) To alleviate the burden of human efforts, we explore adopting automated machine learning in designing and tuning recommender systems. The third contribution of this dissertation is the development of a novel neural architecture search approaches for discovering useful features interactions and designing better models for the click-through rate prediction problem. (4) Considering a large number of recommendation tasks in industrial applications and their similarities, in the last piece of work work, we focus on the hyperparameter tuning problem in the transfer-learning setting and develop a transferable framework for meta-level tuning of machine learning models
    • …
    corecore