102 research outputs found

    Collaborative Toolkit for Crashworthiness Research

    Get PDF

    A Cross-disciplinary, cross-organizational approach to sustainable design and product innovation in the aluminum industry

    Get PDF
    Aluminum is a promising sustainable and industrial resource that provides strong, lightweight structures with complex geometric possibilities, a high recovery rate in the recycling process, and low-emission production when produced by hydropower. Design and product innovations are enabling aluminum to increasingly replace steel in many industrial sectors (such as construction, automotive, and furniture), improving environmental (e.g., reduction of CO2 emission in transport) and financial (e.g., increased circularity and value creation) performance. However, key knowledge of the aluminum value chain is concentrated among the different actors. For instance, downstream actors possess a high level of technical expertise in the metallurgical properties and processing of aluminum, and they are typically situated a long distance from the end market or end user are unaware of the end user’s current and future needs. Investments in and investigations of new aluminum alloys, treatments, and machines are accompanied by high financial and time risks. Cross-disciplinary, cross-organizational collaborations might facilitate design and product innovations, including value creation and sustainability aspects and reducing financial and time risks. There is limited literature on how the different actors in the aluminum value chain should collaborate and which methods they should apply to increase sustainable design and product innovation. Therefore, this study applies a multiple case research approach to identify the benefits, enablers, and barriers of sustainable design and product innovation. Based on the findings, a sustainable design and product innovation framework was developed, highlighting actors, collaboration, and methods applied at different innovation project stages. The introduced approach supports the actors in the aluminum value chain to efficiently introduce sustainable design and product innovations to new and existing markets.publishedVersio

    A plm implementation for aerospace systems engineering-conceptual rotorcraft design

    Get PDF
    The thesis will discuss the Systems Engineering phase of an original Conceptual Design Engineering Methodology for Aerospace Engineering-Vehicle Synthesis. This iterative phase is shown to benefit from digitization of Integrated Product&Process Design (IPPD) activities, through the application of Product Lifecycle Management (PLM) technologies. Requirements analysis through the use of Quality Function Deployment (QFD) and 7 MaP tools is explored as an illustration. A "Requirements Data Manager" (RDM) is used to show the ability to reduce the time and cost to design for both new and legacy/derivative designs. Here the COTS tool Teamcenter Systems Engineering (TCSE) is used as the RDM. The utility of the new methodology is explored through consideration of a legacy RFP based vehicle design proposal and associated aerospace engineering. The 2001 American Helicopter Society (AHS) 18th Student Design Competition RFP is considered as a starting point for the Systems Engineering phase. A Conceptual Design Engineering activity was conducted in 2000/2001 by Graduate students (including the author) in Rotorcraft Engineering at the Daniel Guggenheim School of Aerospace Engineering at the Georgia Institute of Technology, Atlanta GA. This resulted in the "Kingfisher" vehicle design, an advanced search and rescue rotorcraft capable of performing the "Perfect Storm" mission, from the movie of the same name. The associated requirements, architectures, and work breakdown structure data sets for the Kingfisher are used to relate the capabilities of the proposed Integrated Digital Environment (IDE). The IDE is discussed as a repository for legacy knowledge capture, management, and design template creation. A primary thesis theme is to promote the automation of the up-front conceptual definition of complex systems, specifically aerospace vehicles, while anticipating downstream preliminary and full spectrum lifecycle design activities. The thesis forms a basis for additional discussions of PLM tool integration across the engineering, manufacturing, MRO and EOL lifecycle phases to support business management processes.M.S.Committee Chair: Schrage, Daniel P.; Committee Member: Costello, Mark; Committee Member: Wilhite, Alan, W

    Thoughts and Reflections on the Use of Magnesium

    Get PDF

    High strain-rate tests at high temperature in controlled atmosphere

    Get PDF

    Unmanned Aerial Systems: Research, Development, Education & Training at Embry-Riddle Aeronautical University

    Get PDF
    With technological breakthroughs in miniaturized aircraft-related components, including but not limited to communications, computer systems and sensors, state-of-the-art unmanned aerial systems (UAS) have become a reality. This fast-growing industry is anticipating and responding to a myriad of societal applications that will provide new and more cost-effective solutions that previous technologies could not, or will replace activities that involved humans in flight with associated risks. Embry-Riddle Aeronautical University has a long history of aviation-related research and education, and is heavily engaged in UAS activities. This document provides a summary of these activities, and is divided into two parts. The first part provides a brief summary of each of the various activities, while the second part lists the faculty associated with those activities. Within the first part of this document we have separated UAS activities into two broad areas: Engineering and Applications. Each of these broad areas is then further broken down into six sub-areas, which are listed in the Table of Contents. The second part lists the faculty, sorted by campus (Daytona Beach-D, Prescott-P and Worldwide-W) associated with the UAS activities. The UAS activities and the corresponding faculty are cross-referenced. We have chosen to provide very short summaries of the UAS activities rather than lengthy descriptions. If more information is desired, please contact me directly, or visit our research website (https://erau.edu/research), or contact the appropriate faculty member using their e-mail address provided at the end of this document

    Lightweight Vehicle Structures that Absorb and Direct Destructive Energy Away from the Occupants

    Full text link
    One of the main thrusts in current automotive industry is the development of occupant-centric vehicle structures that make the vehicle safe for the occupants. A design philosophy that improves vehicle survivability by absorbing and redirecting destructive energy in underbody blast events should be developed and demonstrated. On the other hand, the size and weight of vehicles are also paramount design factors for the purpose of providing faster transportation, great fuel conservation, higher payload, and higher mobility. Therefore, developing a light weight vehicle structure that provides a balance between survivability and mobility technologies for both vehicle and its occupants becomes a design challenge in this research. One of the new concepts of absorbing blast energy is to utilize the properties of “softer” structural materials in combination with a damping mechanism for absorbing the destructive energy through deformation. These “softer” materials are able to reduce the shock loads by absorbing energy through higher deformation than that of characteristic of normal high strength materials. A generic V-hull structure with five bulkheads developed by the TARDEC is used in the study as the baseline numerical model for investigating this concept. Another new concept is to utilize anisotropic material properties to guide and redirect the destructive energy away from the occupants along pre-designated energy paths. The dynamic performance of multilayer structures is of great interest because they act as a mechanism to absorb and spread the energy from a blast load in the lateral direction instead of permitting it to enter occupant space. A reduced-order modeling (ROM) approach is developed and applied in the preliminary design for studying the dynamic characterization of multilayer structures. The reliability of the ROM is validated by a spectral finite element analysis (SFEA) and a classic finite element analysis by using the commercial code Nastran. A design optimization framework for the multilayer plate is also developed and used to minimize the injury probability, along with a maximum structural weight reduction. Therefore, the goal of designing a lightweight vehicle structure that has high levels of protection in underbody blast events can be achieved in an efficient way.PHDNaval Architecture & Marine EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/135895/1/leaduwin_1.pd

    Computational Simulation: Selected Applications In Medicine, Dentistry, And Surgery

    Get PDF
    This article presents the use of computational modelling software (e.g. ANSYS) for the purposes of simulating, evaluating and developing medical and surgical practice. We provide a summary of computational simulation mo delling that has recently been employed through effective collaborations between the medical, mathematical and engineering research communities. Here, particular attention is being paid to the modelling of medical devices as well as providing an overview o f modelling bone, artificial organs and microvascular blood flows in the machine space of a High Performance Computer (HPC)
    • …
    corecore