16,636 research outputs found

    Collaborative Filtering Similarity Algorithm Using Common Items

    Get PDF
    Collaborative filtering (CF) plays an important role in reducing information overload by providing personalized services. CF is widely applied, but common items are not taken account in the similarity algorithm, which reduces the recommendation effect. To address this issue, we propose several methods to improve the similarity algorithm by considering common items, and apply the proposed methods to CF recommender systems. Experiments show that our methods demonstrate significant improvements over traditional CF

    Improving the performance of web service recommenders using semantic similarity

    Get PDF
    This paper addresses issues related to recommending Semantic Web Services (SWS) using collaborative filtering (CF). The focus is on reducing the problems arising from data sparsity, one of the main difficulties for CF algorithms. Two CF algorithms are presented and discussed: a memory-based algorithm, using the k-NN method, and a model-based algorithm, using the k-means method. In both algorithms, similarity between users is computed using the Pearson Correlation Coefficient (PCC). One of the limitations of using the PCC in this context is that in those instances where users have not rated items in common it is not possible to compute their similarity. In addition, when the number of common items that were rated is low, the reliability of the computed similarity degree may also be low. To overcome these limitations, the presented algorithms compute the similarity between two users taking into account services that both users accessed and also semantically similar services. Likewise, to predict the rating for a not yet accessed target service, the algorithms consider the ratings that neighbor users assigned to the target service, as is normally the case, while also considering the ratings assigned to services that are semantically similar to the target service. The experiments described in the paper show that this approach has a significantly positive impact on prediction accuracy, particularly when the user-item matrix is sparse.Facultad de Informátic

    Improving the performance of web service recommenders using semantic similarity

    Get PDF
    This paper addresses issues related to recommending Semantic Web Services (SWS) using collaborative filtering (CF). The focus is on reducing the problems arising from data sparsity, one of the main difficulties for CF algorithms. Two CF algorithms are presented and discussed: a memory-based algorithm, using the k-NN method, and a model-based algorithm, using the k-means method. In both algorithms, similarity between users is computed using the Pearson Correlation Coefficient (PCC). One of the limitations of using the PCC in this context is that in those instances where users have not rated items in common it is not possible to compute their similarity. In addition, when the number of common items that were rated is low, the reliability of the computed similarity degree may also be low. To overcome these limitations, the presented algorithms compute the similarity between two users taking into account services that both users accessed and also semantically similar services. Likewise, to predict the rating for a not yet accessed target service, the algorithms consider the ratings that neighbor users assigned to the target service, as is normally the case, while also considering the ratings assigned to services that are semantically similar to the target service. The experiments described in the paper show that this approach has a significantly positive impact on prediction accuracy, particularly when the user-item matrix is sparse.Facultad de Informátic

    Recommender System Using Collaborative Filtering Algorithm

    Get PDF
    With the vast amount of data that the world has nowadays, institutions are looking for more and more accurate ways of using this data. Companies like Amazon use their huge amounts of data to give recommendations for users. Based on similarities among items, systems can give predictions for a new item’s rating. Recommender systems use the user, item, and ratings information to predict how other users will like a particular item. Recommender systems are now pervasive and seek to make profit out of customers or successfully meet their needs. However, to reach this goal, systems need to parse a lot of data and collect information, sometimes from different resources, and predict how the user will like the product or item. The computation power needed is considerable. Also, companies try to avoid flooding customer mailboxes with hundreds of products each morning, thus they are looking for one email or text that will make the customer look and act. The motivation to do the project comes from my eagerness to learn website design and get a deep understanding of recommender systems. Applying machine learning dynamically is one of the goals that I set for myself and I wanted to go beyond that and verify my result. Thus, I had to use a large dataset to test the algorithm and compare each technique in terms of error rate. My experience with applying collaborative filtering helps me to understand that finding a solution is not enough, but to strive for a fast and ultimate one. In my case, testing my algorithm in a large data set required me to refine the coding strategy of the algorithm many times to speed the process. In this project, I have designed a website that uses different techniques for recommendations. User-based, Item-based, and Model-based approaches of collaborative filtering are what I have used. Every technique has its way of predicting the user rating for a new item based on existing users’ data. To evaluate each method, I used Movie Lens, an external data set of users, items, and ratings, and calculated the error rate using Mean Absolute Error Rate (MAE) and Root Mean Squared Error (RMSE). Finally, each method has its strengths and weaknesses that relate to the domain in which I am applying these methods
    • …
    corecore