74 research outputs found

    Impressions in Recommender Systems: Present and Future

    Get PDF
    Impressions are a novel data source providing researchers and practitioners with more details about user interactions and their context. In particular, an impression contain the items shown on screen to users, alongside users' interactions toward such items. In recent years, interest in impressions has thrived, and more papers use impressions in recommender systems. Despite this, the literature does not contain a comprehensive review of the current topics and future directions. This work summarizes impressions in recommender systems under three perspectives: recommendation models, datasets with impressions, and evaluation methodologies. Then, we propose several future directions with an emphasis on novel approaches. This work is part of an ongoing review of impressions in recommender systems

    A Change-Detection based Framework for Piecewise-stationary Multi-Armed Bandit Problem

    Full text link
    The multi-armed bandit problem has been extensively studied under the stationary assumption. However in reality, this assumption often does not hold because the distributions of rewards themselves may change over time. In this paper, we propose a change-detection (CD) based framework for multi-armed bandit problems under the piecewise-stationary setting, and study a class of change-detection based UCB (Upper Confidence Bound) policies, CD-UCB, that actively detects change points and restarts the UCB indices. We then develop CUSUM-UCB and PHT-UCB, that belong to the CD-UCB class and use cumulative sum (CUSUM) and Page-Hinkley Test (PHT) to detect changes. We show that CUSUM-UCB obtains the best known regret upper bound under mild assumptions. We also demonstrate the regret reduction of the CD-UCB policies over arbitrary Bernoulli rewards and Yahoo! datasets of webpage click-through rates.Comment: accepted by AAAI 201

    Learning Contextual Bandits in a Non-stationary Environment

    Full text link
    Multi-armed bandit algorithms have become a reference solution for handling the explore/exploit dilemma in recommender systems, and many other important real-world problems, such as display advertisement. However, such algorithms usually assume a stationary reward distribution, which hardly holds in practice as users' preferences are dynamic. This inevitably costs a recommender system consistent suboptimal performance. In this paper, we consider the situation where the underlying distribution of reward remains unchanged over (possibly short) epochs and shifts at unknown time instants. In accordance, we propose a contextual bandit algorithm that detects possible changes of environment based on its reward estimation confidence and updates its arm selection strategy respectively. Rigorous upper regret bound analysis of the proposed algorithm demonstrates its learning effectiveness in such a non-trivial environment. Extensive empirical evaluations on both synthetic and real-world datasets for recommendation confirm its practical utility in a changing environment.Comment: 10 pages, 13 figures, To appear on ACM Special Interest Group on Information Retrieval (SIGIR) 201

    Towards the Use of Clustering Algorithms in Recommender Systems

    Get PDF
    Recommender Systems have been intensively used in Information Systems in the last decades, facilitating the choice of items individually for each user based on your historical. Clustering techniques have been frequently used in commercial and scientific domains in data mining tasks and visualization tools. However, there is a lack of secondary studies in the literature that analyze the use of clustering algorithms in Recommender Systems and their behavior in different aspects. In this work, we present a Systematic Literature Review (SLR), which discusses the different types of information systems with the use of the clustering algorithm in Recommender Systems, which typically involves three main recommendation approaches found in literature: collaborative filtering, content-based filtering, and hybrid recommendation. In the end, we did a quantitative analysis using K-means clustering for finding patterns between clustering algorithms, recommendation approaches, and some datasets used in their publications
    • …
    corecore