3,778 research outputs found

    Collaborative Deep Learning for Recommender Systems

    Full text link
    Collaborative filtering (CF) is a successful approach commonly used by many recommender systems. Conventional CF-based methods use the ratings given to items by users as the sole source of information for learning to make recommendation. However, the ratings are often very sparse in many applications, causing CF-based methods to degrade significantly in their recommendation performance. To address this sparsity problem, auxiliary information such as item content information may be utilized. Collaborative topic regression (CTR) is an appealing recent method taking this approach which tightly couples the two components that learn from two different sources of information. Nevertheless, the latent representation learned by CTR may not be very effective when the auxiliary information is very sparse. To address this problem, we generalize recent advances in deep learning from i.i.d. input to non-i.i.d. (CF-based) input and propose in this paper a hierarchical Bayesian model called collaborative deep learning (CDL), which jointly performs deep representation learning for the content information and collaborative filtering for the ratings (feedback) matrix. Extensive experiments on three real-world datasets from different domains show that CDL can significantly advance the state of the art

    Deep Item-based Collaborative Filtering for Top-N Recommendation

    Full text link
    Item-based Collaborative Filtering(short for ICF) has been widely adopted in recommender systems in industry, owing to its strength in user interest modeling and ease in online personalization. By constructing a user's profile with the items that the user has consumed, ICF recommends items that are similar to the user's profile. With the prevalence of machine learning in recent years, significant processes have been made for ICF by learning item similarity (or representation) from data. Nevertheless, we argue that most existing works have only considered linear and shallow relationship between items, which are insufficient to capture the complicated decision-making process of users. In this work, we propose a more expressive ICF solution by accounting for the nonlinear and higher-order relationship among items. Going beyond modeling only the second-order interaction (e.g. similarity) between two items, we additionally consider the interaction among all interacted item pairs by using nonlinear neural networks. Through this way, we can effectively model the higher-order relationship among items, capturing more complicated effects in user decision-making. For example, it can differentiate which historical itemsets in a user's profile are more important in affecting the user to make a purchase decision on an item. We treat this solution as a deep variant of ICF, thus term it as DeepICF. To justify our proposal, we perform empirical studies on two public datasets from MovieLens and Pinterest. Extensive experiments verify the highly positive effect of higher-order item interaction modeling with nonlinear neural networks. Moreover, we demonstrate that by more fine-grained second-order interaction modeling with attention network, the performance of our DeepICF method can be further improved.Comment: 25 pages, submitted to TOI

    Item Recommendation with Evolving User Preferences and Experience

    Full text link
    Current recommender systems exploit user and item similarities by collaborative filtering. Some advanced methods also consider the temporal evolution of item ratings as a global background process. However, all prior methods disregard the individual evolution of a user's experience level and how this is expressed in the user's writing in a review community. In this paper, we model the joint evolution of user experience, interest in specific item facets, writing style, and rating behavior. This way we can generate individual recommendations that take into account the user's maturity level (e.g., recommending art movies rather than blockbusters for a cinematography expert). As only item ratings and review texts are observables, we capture the user's experience and interests in a latent model learned from her reviews, vocabulary and writing style. We develop a generative HMM-LDA model to trace user evolution, where the Hidden Markov Model (HMM) traces her latent experience progressing over time -- with solely user reviews and ratings as observables over time. The facets of a user's interest are drawn from a Latent Dirichlet Allocation (LDA) model derived from her reviews, as a function of her (again latent) experience level. In experiments with five real-world datasets, we show that our model improves the rating prediction over state-of-the-art baselines, by a substantial margin. We also show, in a use-case study, that our model performs well in the assessment of user experience levels

    Tag based Bayesian latent class models for movies : economic theory reaches out to big data science

    Get PDF
    For the past 50 years, cultural economics has developed as an independent research specialism. At its core are the creative industries and the peculiar economics associated with them, central to which is a tension that arises from the notion that creative goods need to be experienced before an assessment can be made about the utility they deliver to the consumer. In this they differ from the standard private good that forms the basis of demand theory in economic textbooks, in which utility is known ex ante. Furthermore, creative goods are typically complex in composition and subject to heterogeneous and shifting consumer preferences. In response to this, models of linear optimization, rational addiction and Bayesian learning have been applied to better understand consumer decision- making, belief formation and revision. While valuable, these approaches do not lend themselves to forming verifiable hypothesis for the critical reason that they by-pass an essential aspect of creative products: namely, that of novelty. In contrast, computer sciences, and more specifically recommender theory, embrace creative products as a study object. Being items of online transactions, users of creative products share opinions on a massive scale and in doing so generate a flow of data driven research. Not limited by the multiple assumptions made in economic theory, data analysts deal with this type of commodity in a less constrained way, incorporating the variety of item characteristics, as well as their co-use by agents. They apply statistical techniques supporting big data, such as clustering, latent class analysis or singular value decomposition. This thesis is drawn from both disciplines, comparing models, methods and data sets. Based upon movie consumption, the work contrasts bottom-up versus top-down approaches, individual versus collective data, distance measures versus the utility-based comparisons. Rooted in Bayesian latent class models, a synthesis is formed, supported by the random utility theory and recommender algorithm methods. The Bayesian approach makes explicit the experience good nature of creative goods by formulating the prior uncertainty of users towards both movie features and preferences. The latent class method, thus, infers the heterogeneous aspect of preferences, while its dynamic variant- the latent Markov model - gets around one of the main paradoxes in studying creative products: how to analyse taste dynamics when confronted with a good that is novel at each decision point. Generated by mainly movie-user-rating and movie-user-tag triplets, collected from the Movielens recommender system and made available as open data for research by the GroupLens research team, this study of preference patterns formation for creative goods is drawn from individual level data

    Living analytics methods for the social web

    Get PDF
    [no abstract
    corecore