61,487 research outputs found

    Agent and cyber-physical system based self-organizing and self-adaptive intelligent shopfloor

    Get PDF
    The increasing demand of customized production results in huge challenges to the traditional manufacturing systems. In order to allocate resources timely according to the production requirements and to reduce disturbances, a framework for the future intelligent shopfloor is proposed in this paper. The framework consists of three primary models, namely the model of smart machine agent, the self-organizing model, and the self-adaptive model. A cyber-physical system for manufacturing shopfloor based on the multiagent technology is developed to realize the above-mentioned function models. Gray relational analysis and the hierarchy conflict resolution methods were applied to achieve the self-organizing and self-adaptive capabilities, thereby improving the reconfigurability and responsiveness of the shopfloor. A prototype system is developed, which has the adequate flexibility and robustness to configure resources and to deal with disturbances effectively. This research provides a feasible method for designing an autonomous factory with exception-handling capabilities

    Satellite-enabled interactive education: scenarios and systems architectures

    Get PDF
    There are specific sectors of the economy that can benefit from satellite-based tele-education. Areas, such as maritime and agriculture, share common needs for both broadband connectivity at remote geographical areas that cannot otherwise be covered, and for innovative content for tele-education purposes. Furthermore, each area has special requirements with regard to the type of content to be delivered. In this paper we propose a set of architectural designs and case scenarios that will realise such interactive end-to-end education systems based on satellite communications. Services requirements in this setting are also identified and discussed

    Advanced Radio Resource Management for Multi Antenna Packet Radio Systems

    Full text link
    In this paper, we propose fairness-oriented packet scheduling (PS) schemes with power-efficient control mechanism for future packet radio systems. In general, the radio resource management functionality plays an important role in new OFDMA based networks. The control of the network resource division among the users is performed by packet scheduling functionality based on maximizing cell coverage and capacity satisfying, and certain quality of service requirements. Moreover, multiantenna transmit-receive schemes provide additional flexibility to packet scheduler functionality. In order to mitigate inter-cell and co-channel interference problems in OFDMA cellular networks soft frequency reuse with different power masks patterns is used. Stemming from the earlier enhanced proportional fair scheduler studies for single-input multiple-output (SIMO) and multiple-input multipleoutput (MIMO) systems, we extend the development of efficient packet scheduling algorithms by adding transmit power considerations in the overall priority metrics calculations and scheduling decisions. Furthermore, we evaluate the proposed scheduling schemes by simulating practical orthogonal frequency division multiple access (OFDMA) based packet radio system in terms of throughput, coverage and fairness distribution among users. As a concrete example, under reduced overall transmit power constraint and unequal power distribution for different sub-bands, we demonstrate that by using the proposed power-aware multi-user scheduling schemes, significant coverage and fairness improvements in the order of 70% and 20%, respectively, can be obtained, at the expense of average throughput loss of only 15%.Comment: 14 Pages, IJWM

    Distributed Enforcement of Service Choreographies

    Full text link
    Modern service-oriented systems are often built by reusing, and composing together, existing services distributed over the Internet. Service choreography is a possible form of service composition whose goal is to specify the interactions among participant services from a global perspective. In this paper, we formalize a method for the distributed and automated enforcement of service choreographies, and prove its correctness with respect to the realization of the specified choreography. The formalized method is implemented as part of a model-based tool chain released to support the development of choreography-based systems within the EU CHOReOS project. We illustrate our method at work on a distributed social proximity network scenario.Comment: In Proceedings FOCLASA 2014, arXiv:1502.0315
    corecore