1,179 research outputs found

    Reflection and Learning Robustness in a Natural Language Conceptual Physics Tutoring System

    Get PDF
    This thesis investigates whether reflection after tutoring with the Itspoke qualitative physics tutoring system can improve both near and far transfer learning and retention. This question is formalized in three major hypotheses. H1: that reading a post-tutoring reflective text will improve learning compared to reading a non-reflective text. H2: that a more cohesive reflective text will produce higher learning gains for most students. And H3: that students with high domain knowledge will learn more from a less cohesive text.In addition, this thesis addresses the question of which mechanisms affect learning from a reflective text. Secondary hypotheses H4 and H5 posit that textual cohesion and student motivation, respectively, each affect learning by influencing the amount of inference performed while reading.These hypotheses were tested by asking students to read a reflective/abstractive text after tutoring with the Itspoke tutor. This text compared dialog parts in which similar physics principles had been applied to different situations. Students were randomly assigned among two experimental conditions which got ``high' or ``low' cohesion versions of this text, or a control condition which read non-reflective physics material after tutoring.The secondary hypotheses were tested using two measures of cognitive load while reading: reading speeds and a self-report measure of reading difficulty.Near and far transfer learning was measured using sets of questions that were mostly isomorphic vs. non-isomorphic the tutored problems, and retention was measured by administering both an immediate and a delayed post-test. Motivation was measured using a questionnaire.Reading a reflective text improved learning, but only for students with a middle amount of motivation, confirming H1 for that group. These students also learned more from a more cohesive reflective text, supporting H2. Cohesion also affected high and low knowledge students significantly differently, supporting H3, except that high knowledge students learned best from high, not low cohesion text.Students with higher amounts of motivation did have higher cognitive load, confirming hypothesis H5 and suggesting that they engaged the text more actively. However, secondary hypothesis H4 failed to show a role for cognitive load in explaining the learning interaction between knowledge and cohesion demonstrated in H3

    Talk Like an Electrician: Student Dialogue Mimicking Behavior in an Intelligent Tutoring System

    Get PDF
    Abstract. Students entering a new field must learn to speak the specialized language of that field. Previous research using automated measures of word overlap has found that students who modify their language to align more closely to a tutor's language show larger overall learning gains. We present an alternative approach that assesses syntactic as well as lexical alignment in a corpus of human-computer tutorial dialogue. We found distinctive patterns differentiating high and low achieving students. Our high achievers were most likely to mimic their own earlier statements and rarely made mistakes when mimicking the tutor. Low achievers were less likely to reuse their own successful sentence structures, and were more likely to make mistakes when trying to mimic the tutor. We argue that certain types of mimicking should be encouraged in tutorial dialogue systems, an important future research direction

    Positive Versus Negative Agents: The Effects of Emotions on Learning

    Get PDF
    The current study investigates the impact of affect, mood contagion, and linguistic alignment on learning during tutorial conversations between a human student and two artificial pedagogical agents. The study uses an Intelligent Tutoring System known as OperationARIES! to engage students in tutorial conversations with animated agents. In this investigation, 48 college students (N = 48) conversed with pedagogical agents as they displayed 3 different moods (i.e., positive, negative, and neutral) along with a control condition in a within-subjects design. Results indicate that the mood of the agent did not significantly impact student learning even though mood contagion did occur between the artificial agent and the human student. Learning was influenced by the student\u27s self-reported arousal level and the alignment scores that reflected a shared mental representation between the human student and the artificial agents. The results suggest that arousal and linguistic alignment during the tutorial conversations may play a role in learning

    The State of Speech in HCI: Trends, Themes and Challenges

    Get PDF

    Exploring affect-context dependencies for adaptive system development

    Get PDF
    We use χ2 to investigate the context dependency of student affect in our computer tutoring dialogues, targeting uncertainty in student answers in 3 automatically monitorable contexts. Our results show significant dependencies between uncertain answers and specific contexts. Identification and analysis of these dependencies is our first step in developing an adaptive version of our dialogue system.

    Students´ language in computer-assisted tutoring of mathematical proofs

    Get PDF
    Truth and proof are central to mathematics. Proving (or disproving) seemingly simple statements often turns out to be one of the hardest mathematical tasks. Yet, doing proofs is rarely taught in the classroom. Studies on cognitive difficulties in learning to do proofs have shown that pupils and students not only often do not understand or cannot apply basic formal reasoning techniques and do not know how to use formal mathematical language, but, at a far more fundamental level, they also do not understand what it means to prove a statement or even do not see the purpose of proof at all. Since insight into the importance of proof and doing proofs as such cannot be learnt other than by practice, learning support through individualised tutoring is in demand. This volume presents a part of an interdisciplinary project, set at the intersection of pedagogical science, artificial intelligence, and (computational) linguistics, which investigated issues involved in provisioning computer-based tutoring of mathematical proofs through dialogue in natural language. The ultimate goal in this context, addressing the above-mentioned need for learning support, is to build intelligent automated tutoring systems for mathematical proofs. The research presented here has been focused on the language that students use while interacting with such a system: its linguistic propeties and computational modelling. Contribution is made at three levels: first, an analysis of language phenomena found in students´ input to a (simulated) proof tutoring system is conducted and the variety of students´ verbalisations is quantitatively assessed, second, a general computational processing strategy for informal mathematical language and methods of modelling prominent language phenomena are proposed, and third, the prospects for natural language as an input modality for proof tutoring systems is evaluated based on collected corpora
    corecore