81,092 research outputs found

    Quantum state majorization at the output of bosonic Gaussian channels

    Get PDF
    Quantum communication theory explores the implications of quantum mechanics to the tasks of information transmission. Many physical channels can be formally described as quantum Gaussian operations acting on bosonic quantum states. Depending on the input state and on the quality of the channel, the output suffers certain amount of noise. For a long time it has been conjectured, but never proved, that output states of Gaussian channels corresponding to coherent input signals are the less noisy ones (in the sense of a majorization criterion). In this work we prove this conjecture. Specifically we show that every output state of a phase insensitive Gaussian channel is majorized by the output state corresponding to a coherent input. The proof is based on the optimality of coherent states for the minimization of strictly concave output functionals. Moreover we show that coherent states are the unique optimizers.Comment: 7 pages, 1 figure. Published versio

    Coherent States of Harmonic Oscillator and Generalized Uncertainty Principle

    Full text link
    In this paper dynamics and quantum mechanical coherent states of a simple harmonic oscillator are considered in the framework of Generalized Uncertainty Principle(GUP). Equations of motion for simple harmonic oscillator are derived and some of their new implications are discussed. Then coherent states of harmonic oscillator in the case of GUP are compared with relative situation in ordinary quantum mechanics. It is shown that in the framework of GUP there is no considerable difference in definition of coherent states relative to ordinary quantum mechanics. But, considering expectation values and variances of some operators, based on quantum gravitational arguments one concludes that although it is possible to have complete coherency and vanishing broadening in usual quantum mechanics, gravitational induced uncertainty destroys complete coherency in quantum gravity and it is not possible to have a monochromatic ray in principle.Comment: 12 pages, no figur

    Coherent States and Modified de Broglie-Bohm Complex Quantum Trajectories

    Full text link
    This paper examines the nature of classical correspondence in the case of coherent states at the level of quantum trajectories. We first show that for a harmonic oscillator, the coherent state complex quantum trajectories and the complex classical trajectories are identical to each other. This congruence in the complex plane, not restricted to high quantum numbers alone, illustrates that the harmonic oscillator in a coherent state executes classical motion. The quantum trajectories are those conceived in a modified de Broglie-Bohm scheme and we note that identical classical and quantum trajectories for coherent states are obtained only in the present approach. The study is extended to Gazeau-Klauder and SUSY quantum mechanics-based coherent states of a particle in an infinite potential well and that in a symmetric Poschl-Teller (PT) potential by solving for the trajectories numerically. For the coherent state of the infinite potential well, almost identical classical and quantum trajectories are obtained whereas for the PT potential, though classical trajectories are not regained, a periodic motion results as t --> \infty.Comment: More example

    Generalized coherent states for solvable quantum systems with degenerate discrete spectra and their nonclassical properties

    Full text link
    In this paper, the generalized coherent state for quantum systems with degenerate spectra is introduced. Then, the nonclassicality features and number-phase entropic uncertainty relation of two particular degenerate quantum systems are studied. Finally, using the Gazeau-Klauder coherent states approach, time evolution of some of the nonclassical properties of the coherent states corresponding to the considered physical systems are discussed.Comment: 17 pages, 10 figures,Physica A: Statistical Mechanics and its Applications, Article in Pres
    corecore