214,453 research outputs found

    Interpreting, axiomatising and representing coherent choice functions in terms of desirability

    Get PDF
    Choice functions constitute a simple, direct and very general mathematical framework for modelling choice under uncertainty. In particular, they are able to represent the set-valued choices that appear in imprecise-probabilistic decision making. We provide these choice functions with a clear interpretation in terms of desirability, use this interpretation to derive a set of basic coherence axioms, and show that this notion of coherence leads to a representation in terms of sets of strict preference orders. By imposing additional properties such as totality, the mixing property and Archimedeanity, we obtain representation in terms of sets of strict total orders, lexicographic probability systems, coherent lower previsions or linear previsions.Comment: arXiv admin note: text overlap with arXiv:1806.0104

    A desirability-based axiomatisation for coherent choice functions

    Get PDF
    Choice functions constitute a simple, direct and very general mathematical framework for modelling choice under uncertainty. In particular, they are able to represent the set-valued choices that typically arise from applying decision rules to imprecise-probabilistic uncertainty models. We provide them with a clear interpretation in terms of attitudes towards gambling, borrowing ideas from the theory of sets of desirable gambles, and we use this interpretation to derive a set of basic axioms. We show that these axioms lead to a full-fledged theory of coherent choice functions, which includes a representation in terms of sets of desirable gambles, and a conservative inference method

    A Desirability-Based Axiomatisation for Coherent Choice Functions

    Get PDF
    Choice functions constitute a simple, direct and very general mathematical framework for modelling choice under uncertainty. In particular, they are able to represent the set-valued choices that typically arise from applying decision rules to imprecise-probabilistic uncertainty models. We provide them with a clear interpretation in terms of attitudes towards gambling, borrowing ideas from the theory of sets of desirable gambles, and we use this interpretation to derive a set of basic axioms. We show that these axioms lead to a full-fledged theory of coherent choice functions, which includes a representation in terms of sets of desirable gambles, and a conservative inference method

    Interpreting, axiomatising and representing coherent choice functions in terms of desirability

    Get PDF
    Choice functions constitute a simple, direct and very general mathematical framework for modelling choice under uncertainty. In particular, they are able to represent the set-valued choices that appear in imprecise-probabilistic decision making. We provide these choice functions with a clear interpretation in terms of desirability, use this interpretation to derive a set of basic coherence axioms, and show that this notion of coherence leads to a representation in terms of sets of strict preference orders. By imposing additional properties such as totality, the mixing property and Archimedeanity, we obtain representation in terms of sets of strict total orders, lexicographic probability systems, coherent lower previsions or linear previsions

    Coherent States for 3d Deformed Special Relativity: semi-classical points in a quantum flat spacetime

    Full text link
    We analyse the quantum geometry of 3-dimensional deformed special relativity (DSR) and the notion of spacetime points in such a context, identified with coherent states that minimize the uncertainty relations among spacetime coordinates operators. We construct this system of coherent states in both the Riemannian and Lorentzian case, and study their properties and their geometric interpretation.Comment: RevTeX4, 20 page

    Believing Probabilistic Contents: On the Expressive Power and Coherence of Sets of Sets of Probabilities

    Get PDF
    Moss (2018) argues that rational agents are best thought of not as having degrees of belief in various propositions but as having beliefs in probabilistic contents, or probabilistic beliefs. Probabilistic contents are sets of probability functions. Probabilistic belief states, in turn, are modeled by sets of probabilistic contents, or sets of sets of probability functions. We argue that this Mossean framework is of considerable interest quite independently of its role in Moss’ account of probabilistic knowledge or her semantics for epistemic modals and probability operators. It is an extremely general model of uncertainty. Indeed, it is at least as general and expressively powerful as every other current imprecise probability framework, including lower probabilities, lower previsions, sets of probabilities, sets of desirable gambles, and choice functions. In addition, we partially answer an important question that Moss leaves open, viz., why should rational agents have consistent probabilistic beliefs? We show that an important subclass of Mossean believers avoid Dutch bookability iff they have consistent probabilistic beliefs

    An Information-Theoretic Measure of Uncertainty due to Quantum and Thermal Fluctuations

    Full text link
    We study an information-theoretic measure of uncertainty for quantum systems. It is the Shannon information II of the phase space probability distribution \la z | \rho | z \ra , where |z \ra are coherent states, and ρ\rho is the density matrix. The uncertainty principle is expressed in this measure as I≄1I \ge 1. For a harmonic oscillator in a thermal state, II coincides with von Neumann entropy, - \Tr(\rho \ln \rho), in the high-temperature regime, but unlike entropy, it is non-zero at zero temperature. It therefore supplies a non-trivial measure of uncertainty due to both quantum and thermal fluctuations. We study II as a function of time for a class of non-equilibrium quantum systems consisting of a distinguished system coupled to a heat bath. We derive an evolution equation for II. For the harmonic oscillator, in the Fokker-Planck regime, we show that II increases monotonically. For more general Hamiltonians, II settles down to monotonic increase in the long run, but may suffer an initial decrease for certain initial states that undergo ``reassembly'' (the opposite of quantum spreading). Our main result is to prove, for linear systems, that II at each moment of time has a lower bound ItminI_t^{min}, over all possible initial states. This bound is a generalization of the uncertainty principle to include thermal fluctuations in non-equilibrium systems, and represents the least amount of uncertainty the system must suffer after evolution in the presence of an environment for time tt.Comment: 36 pages (revised uncorrupted version), Report IC 92-93/2

    About Lorentz invariance in a discrete quantum setting

    Full text link
    A common misconception is that Lorentz invariance is inconsistent with a discrete spacetime structure and a minimal length: under Lorentz contraction, a Planck length ruler would be seen as smaller by a boosted observer. We argue that in the context of quantum gravity, the distance between two points becomes an operator and show through a toy model, inspired by Loop Quantum Gravity, that the notion of a quantum of geometry and of discrete spectra of geometric operators, is not inconsistent with Lorentz invariance. The main feature of the model is that a state of definite length for a given observer turns into a superposition of eigenstates of the length operator when seen by a boosted observer. More generally, we discuss the issue of actually measuring distances taking into account the limitations imposed by quantum gravity considerations and we analyze the notion of distance and the phenomenon of Lorentz contraction in the framework of ``deformed (or doubly) special relativity'' (DSR), which tentatively provides an effective description of quantum gravity around a flat background. In order to do this we study the Hilbert space structure of DSR, and study various quantum geometric operators acting on it and analyze their spectral properties. We also discuss the notion of spacetime point in DSR in terms of coherent states. We show how the way Lorentz invariance is preserved in this context is analogous to that in the toy model.Comment: 25 pages, RevTe

    The role of phase space geometry in Heisenberg's uncertainty relation

    Full text link
    Aiming towards a geometric description of quantum theory, we study the coherent states-induced metric on the phase space, which provides a geometric formulation of the Heisenberg uncertainty relations (both the position-momentum and the time-energy ones). The metric also distinguishes the original uncertainty relations of Heisenberg from the ones that are obtained from non-commutativity of operators. Conversely, the uncertainty relations can be written in terms of this metric only, hence they can be formulated for any physical system, including ones with non-trivial phase space. Moreover, the metric is a key ingredient of the probability structure of continuous-time histories on phase space. This fact allows a simple new proof the impossibility of the physical manifestation of the quantum Zeno and anti-Zeno paradoxes. Finally, we construct the coherent states for a spinless relativistic particle, as a non-trivial example by which we demonstrate our results.Comment: 28 pages, late
    • 

    corecore