11,483 research outputs found
Coherent inductive communications link for biomedical applications
A two-way coherent inductive communications link between an external transceiver and an internal transceiver located in a biologically implanted programmable medical device. Digitally formatted command data and programming data is transmitted to the implanted medical device by frequency shift keying the inductive communications link. Internal transceiver is powered by the inductive field between internal and external transceivers. Digitally formatted data is transmitted to external transceiver by internal transceiver amplitude modulating inductive field. Immediate verification of the establishment of a reliable communications link is provided by determining existence of frequency lock and bit phase lock between internal and external transceivers
Coherent optical phase transfer over a 32-km fiber with 1-s instability at
The phase coherence of an ultrastable optical frequency reference is fully
maintained over actively stabilized fiber networks of lengths exceeding 30 km.
For a 7-km link installed in an urban environment, the transfer instability is
at 1-s. The excess phase noise of 0.15 rad, integrated from
8 mHz to 25 MHz, yields a total timing jitter of 0.085 fs. A 32-km link
achieves similar performance. Using frequency combs at each end of the
coherent-transfer fiber link, a heterodyne beat between two independent
ultrastable lasers, separated by 3.5 km and 163 THz, achieves a 1-Hz linewidth.Comment: 4 pages, 4 figure
A new coupling solution for G3-PLC employment in MV smart grids
This paper proposes a new coupling solution for transmitting narrowband multicarrier power line communication (PLC) signals over medium voltage (MV) power lines. The proposed system is based on an innovative PLC coupling principle, patented by the authors, which exploits the capacitive divider embedded in voltage detecting systems (VDS) already installed inside the MV switchboard. Thus, no dedicated couplers have to be installed and no switchboard modifications or energy interruptions are needed. This allows a significant cost reduction of MV PLC implementation. A first prototype of the proposed coupling system was presented in previous papers: it had a 15 kHz bandwidth useful to couple single carrier PSK modulated PLC signals with a center frequency from 50–200 kHz. In this paper, a new prototype is developed with a larger bandwidth, up to 164 kHz, thus allowing to couple multicarrier G3-PLC signals using orthogonal frequency division multiplexing (OFDM) digital modulation. This modulation ensures a more robust communication even in harsh power line channels. In the paper, the new coupling system design is described in detail. A new procedure is presented for tuning the coupling system parameters at first installation in a generic MV switchboard. Finally, laboratory and in-field experimental test results are reported and discussed. The coupling performances are evaluated measuring the throughput and success rate in the case of both 18 and 36 subcarriers, in one of the different tone masks standardized for the FCC-above CENELEC band (that is, from 154.6875–487.5 kHz). The experimental results show an efficient behavior of the proposed coupler allowing a two-way communication of G3-PLC OFDM signals on MV networks
Development of a Compact, Pulsed, 2-Micron, Coherent-Detection, Doppler Wind Lidar Transceiver; and Plans for Flights on NASA's DC-8 and WB-57 Aircraft
We present results of a recently completed effort to design, fabricate, and demonstrate a compact lidar transceiver for coherent-detection lidar profiling of winds. The novel high-energy, 2-micron, Ho:Tm:LuLiF laser technology developed at NASA Langley was employed to permit study of the laser technology currently envisioned by NASA for global coherent Doppler lidar measurement of winds in the future. The 250 mJ, 10 Hz compact transceiver was also designed for future aircraft flight. Ground-based wind profiles made with this transceiver will be presented. NASA Langley is currently funded to build complete Doppler lidar systems using this transceiver for the DC-8 and WB-57 aircraft. The WB-57 flights will present a more severe environment and will require autonomous operation of the lidar system. The DC-8 lidar system is a likely component of future NASA hurricane research. It will include real-time data processing and display, as well as full data archiving. We will attempt to co-fly on both aircraft with a direct-detection Doppler wind lidar system being prepared by NASA Goddard Space Flight Center
Hardware Impairments Aware Transceiver for Full-Duplex Massive MIMO Relaying
This paper studies the massive MIMO full-duplex relaying (MM-FDR), where
multiple source-destination pairs communicate simultaneously with the help of a
common full-duplex relay equipped with very large antenna arrays. Different
from the traditional MM-FDR protocol, a general model where
sources/destinations are allowed to equip with multiple antennas is considered.
In contrast to the conventional MIMO system, massive MIMO must be built with
low-cost components which are prone to hardware impairments. In this paper, the
effect of hardware impairments is taken into consideration, and is modeled
using transmit/receive distortion noises. We propose a low complexity hardware
impairments aware transceiver scheme (named as HIA scheme) to mitigate the
distortion noises by exploiting the statistical knowledge of channels and
antenna arrays at sources and destinations. A joint degree of freedom and power
optimization algorithm is presented to further optimize the spectral efficiency
of HIA based MM-FDR. The results show that the HIA scheme can mitigate the
"ceiling effect" appears in traditional MM-FDR protocol, if the numbers of
antennas at sources and destinations can scale with that at the relay.Comment: Extended version of 'Hardware Impairments Aware Transceiver for
Full-Duplex Massive MIMO Relaying'(Doi: 10.1109/TSP.2015.2469635
- …
