1,890 research outputs found

    Stabilization of localized structures by inhomogeneous injection in Kerr resonators

    Full text link
    We consider the formation of temporal localized structures or Kerr comb generation in a microresonator with inhomogeneities. We show that the introduction of even a small inhomogeneity in the injected beam widens the stability region of localized solutions. The homoclinic snaking bifurcation associated with the formation of localized structures and clusters of them with decaying oscillatory tails is constructed. Furthermore, the inhomogeneity allows not only to control the position of localized solutions, but strongly affects their stability domains. In particular, a new stability domain of a single peak localized structure appears outside of the region of multistability between multiple peaks of localized states. We identify a regime of larger detuning, where localized structures do not exhibit a snaking behavior. In this regime, the effect of inhomogeneities on localized solutions is far more complex: they can act either attracting or repelling. We identify the pitchfork bifurcation responsible for this transition. Finally, we use a potential well approach to determine the force exerted by the inhomogeneity and summarize with a full analysis of the parameter regime where localized structures and therefore Kerr comb generation exist and analyze how this regime changes in the presence of an inhomogeneity

    Inhomogeneities in 3 dimensional oscillatory media

    Full text link
    We consider localized perturbations to spatially homogeneous oscillations in dimension 3 using the complex Ginzburg-Landau equation as a prototype. In particular, we will focus on heterogeneities that locally change the phase of the oscillations. In the usual translation invariant spaces and at ε=0 \varepsilon=0 the linearization about these spatially homogeneous solutions result in an operator with zero eigenvalue embedded in the essential spectrum. In contrast, we show that when considered as an operator between Kondratiev spaces, the linearization is a Fredholm operator. These spaces consist of functions with algebraical localization that increases with each derivative. We use this result to construct solutions close to the equilibrium via the Implicit Function Theorem and derive asymptotics for wavenumbers in the far field.Comment: 3 figures, 15 pages. More accurate numerical results. Added a figure illustrating the decay of Amplitude of solution

    Fundamentals and applications of spatial dissipative solitons in photonic devices : [Chapter 6]

    Get PDF
    We review the properties of optical spatial dissipative solitons (SDS). These are stable, self‐localized optical excitations sitting on a uniform, or quasi‐uniform, background in a dissipative environment like a nonlinear optical cavity. Indeed, in optics they are often termed “cavity solitons.” We discuss their dynamics and interactions in both ideal and imperfect systems, making comparison with experiments. SDS in lasers offer important advantages for applications. We review candidate schemes and the tremendous recent progress in semiconductor‐based cavity soliton lasers. We examine SDS in periodic structures, and we show how SDS can be quantitatively related to the locking of fronts. We conclude with an assessment of potential applications of SDS in photonics, arguing that best use of their particular features is made by exploiting their mobility, for example in all‐optical delay lines

    Self-induced switchings between multiple space-time patterns on complex networks of excitable units

    Full text link
    We report on self-induced switchings between multiple distinct space--time patterns in the dynamics of a spatially extended excitable system. These switchings between low-amplitude oscillations, nonlinear waves, and extreme events strongly resemble a random process, although the system is deterministic. We show that a chaotic saddle -- which contains all the patterns as well as channel-like structures that mediate the transitions between them -- is the backbone of such a pattern switching dynamics. Our analyses indicate that essential ingredients for the observed phenomena are that the system behaves like an inhomogeneous oscillatory medium that is capable of self-generating spatially localized excitations and that is dominated by short-range connections but also features long-range connections. With our findings, we present an alternative to the well-known ways to obtain self-induced pattern switching, namely noise-induced attractor hopping, heteroclinic orbits, and adaptation to an external signal. This alternative way can be expected to improve our understanding of pattern switchings in spatially extended natural dynamical systems like the brain and the heart
    corecore