2,278 research outputs found

    Synchronicity From Synchronized Chaos

    Get PDF
    The synchronization of loosely coupled chaotic oscillators, a phenomenon investigated intensively for the last two decades, may realize the philosophical notion of synchronicity. Effectively unpredictable chaotic systems, coupled through only a few variables, commonly exhibit a predictable relationship that can be highly intermittent. We argue that the phenomenon closely resembles the notion of meaningful synchronicity put forward by Jung and Pauli if one identifies "meaningfulness" with internal synchronization, since the latter seems necessary for synchronizability with an external system. Jungian synchronization of mind and matter is realized if mind is analogized to a computer model, synchronizing with a sporadically observed system as in meteorological data assimilation. Internal synchronization provides a recipe for combining different models of the same objective process, a configuration that may also describe the functioning of conscious brains. In contrast to Pauli's view, recent developments suggest a materialist picture of semi-autonomous mind, existing alongside the observed world, with both exhibiting a synchronistic order. Basic physical synchronicity is manifest in the non-local quantum connections implied by Bell's theorem. The quantum world resides on a generalized synchronization "manifold", a view that provides a bridge between nonlocal realist interpretations and local realist interpretations that constrain observer choice .Comment: 1) clarification regarding the connection with philosophical synchronicity in Section 2 and in the concluding section 2) reference to Maldacena-Susskind "ER=EPR" relation in discussion of role of wormholes in entanglement and nonlocality 3) length reduction and stylistic changes throughou

    An Probability-Based Energy Model on Cache Coherence Protocol with Mobile Sensor Network

    Get PDF
    Mobile sensor networks (MSNs) are widely used in various domains to monitor, record, compute, and interact the information within an environment. To prolong the life time of each node in MSNs, energy model and conservation should be considered carefully when designing the data communication mechanism in the network. The limited battery volume and high workload on channels worsen the life times of the busy nodes. In this paper, we propose a new energy evaluating methodology of packet transmissions in MSNs, which is based on redividing network layers and describing the synchronous data flow with matrix form. We first introduce the cache coherence layer to the protocol stack of MSNs. Then, we use a set of energy probability matrices to describe and calculate the energy consumption of each state in the protocol. After that, based on our energy model, we will give out an energy evaluating method of the MSNs design, which is suitable for measuring and comparing the energy consumption from different implements of hardware/software. Our experimental results show that our approach achieves a precision with less than 2% error and provides a credible quantitative criterion for energy optimization of data communication in MSNs

    Robust Decentralized Secondary Frequency Control in Power Systems: Merits and Trade-Offs

    Get PDF
    Frequency restoration in power systems is conventionally performed by broadcasting a centralized signal to local controllers. As a result of the energy transition, technological advances, and the scientific interest in distributed control and optimization methods, a plethora of distributed frequency control strategies have been proposed recently that rely on communication amongst local controllers. In this paper we propose a fully decentralized leaky integral controller for frequency restoration that is derived from a classic lag element. We study steady-state, asymptotic optimality, nominal stability, input-to-state stability, noise rejection, transient performance, and robustness properties of this controller in closed loop with a nonlinear and multivariable power system model. We demonstrate that the leaky integral controller can strike an acceptable trade-off between performance and robustness as well as between asymptotic disturbance rejection and transient convergence rate by tuning its DC gain and time constant. We compare our findings to conventional decentralized integral control and distributed-averaging-based integral control in theory and simulations
    corecore