6,026 research outputs found

    Categorical invariance and structural complexity in human concept learning

    Get PDF
    An alternative account of human concept learning based on an invariance measure of the categorical\ud stimulus is proposed. The categorical invariance model (CIM) characterizes the degree of structural\ud complexity of a Boolean category as a function of its inherent degree of invariance and its cardinality or\ud size. To do this we introduce a mathematical framework based on the notion of a Boolean differential\ud operator on Boolean categories that generates the degrees of invariance (i.e., logical manifold) of the\ud category in respect to its dimensions. Using this framework, we propose that the structural complexity\ud of a Boolean category is indirectly proportional to its degree of categorical invariance and directly\ud proportional to its cardinality or size. Consequently, complexity and invariance notions are formally\ud unified to account for concept learning difficulty. Beyond developing the above unifying mathematical\ud framework, the CIM is significant in that: (1) it precisely predicts the key learning difficulty ordering of\ud the SHJ [Shepard, R. N., Hovland, C. L.,&Jenkins, H. M. (1961). Learning and memorization of classifications.\ud Psychological Monographs: General and Applied, 75(13), 1-42] Boolean category types consisting of three\ud binary dimensions and four positive examples; (2) it is, in general, a good quantitative predictor of the\ud degree of learning difficulty of a large class of categories (in particular, the 41 category types studied\ud by Feldman [Feldman, J. (2000). Minimization of Boolean complexity in human concept learning. Nature,\ud 407, 630-633]); (3) it is, in general, a good quantitative predictor of parity effects for this large class of\ud categories; (4) it does all of the above without free parameters; and (5) it is cognitively plausible (e.g.,\ud cognitively tractable)

    Modeling Human Visual Search Performance on Realistic Webpages Using Analytical and Deep Learning Methods

    Full text link
    Modeling visual search not only offers an opportunity to predict the usability of an interface before actually testing it on real users, but also advances scientific understanding about human behavior. In this work, we first conduct a set of analyses on a large-scale dataset of visual search tasks on realistic webpages. We then present a deep neural network that learns to predict the scannability of webpage content, i.e., how easy it is for a user to find a specific target. Our model leverages both heuristic-based features such as target size and unstructured features such as raw image pixels. This approach allows us to model complex interactions that might be involved in a realistic visual search task, which can not be easily achieved by traditional analytical models. We analyze the model behavior to offer our insights into how the salience map learned by the model aligns with human intuition and how the learned semantic representation of each target type relates to its visual search performance.Comment: the 2020 CHI Conference on Human Factors in Computing System

    Language and Cognition Interaction Neural Mechanisms

    Get PDF
    How language and cognition interact in thinking? Is language just used for communication of completed thoughts, or is it fundamental for thinking? Existing approaches have not led to a computational theory. We develop a hypothesis that language and cognition are two separate but closely interacting mechanisms. Language accumulates cultural wisdom; cognition develops mental representations modeling surrounding world and adapts cultural knowledge to concrete circumstances of life. Language is acquired from surrounding language “ready-made” and therefore can be acquired early in life. This early acquisition of language in childhood encompasses the entire hierarchy from sounds to words, to phrases, and to highest concepts existing in culture. Cognition is developed from experience. Yet cognition cannot be acquired from experience alone; language is a necessary intermediary, a “teacher.” A mathematical model is developed; it overcomes previous difficulties and leads to a computational theory. This model is consistent with Arbib's “language prewired brain” built on top of mirror neuron system. It models recent neuroimaging data about cognition, remaining unnoticed by other theories. A number of properties of language and cognition are explained, which previously seemed mysterious, including influence of language grammar on cultural evolution, which may explain specifics of English and Arabic cultures

    Where's Waldo?® How perceptual, cognitive, and emotional brain processes cooperate during learning to categorize and find desired objects in a cluttered scene

    Full text link
    The Where's Waldo problem concerns how individuals can rapidly scan a scene to detect a target object in it. This dissertation develops the ARTSCAN Search neural model to clarify how brain mechanisms that govern spatial and object attention, spatially-invariant object learning and recognition, reinforcement learning, and eye movement search are coordinated to enable learning and directed search for desired objects at specific locations in a cluttered scene. In the model, interactions from the Where cortical processing stream to the What cortical processing stream modulate invariant category learning of a desired object, whereas interactions from the What cortical processing stream to the Where cortical processing stream support search for the object. In particular, when an invariant object category representation is activated top-down by a cognitive plan or by an active motivational source in the model's What stream, it can shift spatial attention in the Where stream and thereby selectively activate the locations of sought-after object exemplars. These combined What-to-Where and Where-to-What interactions clarify how the brain's solution of the Where's Waldo problem overcomes the complementary deficiencies of What and Where stream processes taken individually by using inter-stream interactions that allow both invariant object recognition and spatially selective attention and action to occur

    Medical Data Classification Using Similarity Measure of Fuzzy Soft Set Based Distance Measure

    Get PDF
    Medical data classification plays a crucial role in many medical imaging applications by automating or facilitating the delineation of medical images. A considerable amount of literature has been published on medical images classification based on data mining techniques to develop intelligent medical decision support systems to help the physicians. This paper assesses the performance of a new classification algorithm using similarity measure fuzzy soft set based distance based for numerical medical datasets. The proposed modelling comprises of five phases explicitly: data acquisition, data pre-processing, data partitioning, classification using FussCyier and performance evaluation. The proposed classifier FussCyier is evaluated on five performance matrices’: accuracy, precision, recall, F-Micro and computational time. Experimental results indicate that the proposed classifier performed comparatively better with existing fuzzy soft classifiers

    Neurally and Mathematically Motivated Architecture for Language and Thought

    Get PDF
    Neural structures of interaction between thinking and language are unknown. This paper suggests a possible architecture motivated by neural and mathematical considerations. A mathematical requirement of computability imposes significant constraints on possible architectures consistent with brain neural structure and with a wealth of psychological knowledge. How language interacts with cognition. Do we think with words, or is thinking independent from language with words being just labels for decisions? Why is language learned by the age of 5 or 7, but acquisition of knowledge represented by learning to use this language knowledge takes a lifetime? This paper discusses hierarchical aspects of language and thought and argues that high level abstract thinking is impossible without language. We discuss a mathematical technique that can model the joint language-thought architecture, while overcoming previously encountered difficulties of computability. This architecture explains a contradiction between human ability for rational thoughtful decisions and irrationality of human thinking revealed by Tversky and Kahneman; a crucial role in this contradiction might be played by language. The proposed model resolves long-standing issues: how the brain learns correct words-object associations; why animals do not talk and think like people. We propose the role played by language emotionality in its interaction with thought. We relate the mathematical model to Humboldt’s “firmness” of languages; and discuss possible influence of language grammar on its emotionality. Psychological and brain imaging experiments related to the proposed model are discussed. Future theoretical and experimental research is outlined

    Affect-Based Effects of Simulation Games on Learning

    Get PDF
    Empirical evidence has demonstrated the benefits of using simulation games in enhancing learning especially in terms of cognitive gains. This is to be expected as the dynamism and non-linearity of simulation games are more cognitively demanding. However, the other effects of simulation games, specifically in terms of learners’ emotions, have not been given much attention and are under-investigated. This study aims to demonstrate that simulation games stimulate positive emotions from learners that help to enhance learning. The study finds that the affect-based constructs of interest, engagement and appreciation are positively correlated to learning. A stepwise multiple regression analysis shows that a model involving interest and engagement are significantly associated with learning. The emotions of learners should be considered in the development of curriculum, and the delivery of learning and teaching as positive emotions enhances learning
    corecore