8,889 research outputs found

    In-situ simulation: A different approach to patient safety through immersive training

    Get PDF
    Simulation is becoming more and more popular in the field of healthcare education. The main concern for some faculty is knowing how to organise simulation training sessions when there is no simulation centre as they are not yet widely available and their cost is often prohibitive. In medical education, the pedagogic objectives are mainly aimed at improving the quality of care as well as patient safety. To that effect, a mobile training approach whereby simulation-based education is done at the point of care, outside simulation centres, is particularly appropriate. It is usually called “in-situ simulation”. This is an approach that allows training of care providers as a team in their normal working environment. It is particularly useful to observe human factors and train team members in a context that is their real working environment. This immersive training approach can be relatively low cost and enables to identify strengths and weaknesses of a healthcare system. This article reminds readers of the principle of « context specific learning » that is needed for the good implementation of simulation-based education in healthcare while highlighting the advantages, obstacles, and challenges to the development of in-situ simulation in hospitals. The objective is to make clinical simulation accessible to all clinicians for the best interests of the patient.Peer reviewe

    The role of cognitive abilities in laparoscopic simulator training

    Get PDF
    Learning minimally invasive surgery (MIS) differs substantially from learning open surgery and trainees differ in their ability to learn MIS. Previous studies mainly focused on the role of visuo-spatial ability (VSA) on the learning curve for MIS. In the current study, the relationship between spatial memory, perceptual speed, and general reasoning ability, in addition to VSA, and performance on a MIS simulator is examined. Fifty-three laparoscopic novices were tested for cognitive aptitude. Laparoscopic performance was assessed with the LapSim simulator (Surgical Science Ltd., Gothenburg, Sweden). Participants trained multiple sessions on the simulator until proficiency was reached. Participants showed significant improvement on the time to complete the task and efficiency of movement. Performance was related to different cognitive abilities, depending on the performance measure and type of cognitive ability. No relationship between cognitive aptitude and duration of training or steepness of the learning curve was found. Cognitive aptitude mediates certain aspects of performance during training on a laparoscopic simulator. Based on the current study, we conclude that cognitive aptitude tests cannot be used for resident selection but are potentially useful for developing individualized training programs. More research will be performed to examine how cognitive aptitude testing can be used to design training programs

    Developing high-fidelity health care simulation scenarios : a guide for educators and professionals

    Get PDF
    “The final, definitive version of this article has been published in the Journal, Simulation & Gaming, 42 (1), 2011, copyright SAGE Publications Ltd on SAGE Journals Online: http://online.sagepub.com/ "The development of appropriate scenarios is critical in high-fidelity simulation training. They need to be developed to address specific learning objectives, while not preventing other learning points from emerging. Buying a patient simulator, finding a volunteertoact as the patient, or even obtaining ready-made scenarios from another simulation center are rarely insurmountable challenges. The issue often lies in how to use or adapt these for your own purpose: with your team, facilities, and resources but primarily for your learners. Published information is limited in the area of scenario preparation for health care education and continuing medical education or continuing professional development. This article is a guide for clinical tutors, standardized patient trainers, and patient simulator operators on how to script scenarios and proposes a new detailed and reusable template for writing scenarios. It contains practical sections such as how to decide on the learning objectives to be addressed, how to script and organize your scenarios, and how to pitch the suitable level of details to make the scenarios appropriately realistic.Peer reviewe

    High-fidelity simulation increases obstetric self-assurance and skills in undergraduate medical students

    Get PDF
    Objective: Teaching intrapartum care is one of the most challenging tasks in undergraduate medical education. High-fidelity obstetric simulators might support students' learning experience. The specific educational impact of these simulators compared with traditional methods of model-based obstetric teaching has not yet been determined. Study design: We randomly assigned 46 undergraduate medical students to be taught using either a high-fidelity simulator or a scale wood-and-leather phantom. Their self-assessments were evaluated using a validated questionnaire. We assessed obstetric skills and asked students to solve obstetric paper cases. Main outcome measures: Assessment of fidelity-specific teaching impact on procedural knowledge, motivation, and interest in obstetrics as well as obstetric skills using high- and low-fidelity training models. Results: High-fidelity simulation specifically improved students' feeling that they understood both the physiology of parturition and the obstetric procedures. Students in the simulation group also felt better prepared for obstetric house jobs and performed better in obstetric skills evaluations. However, the two groups made equivalent obstetric decisions. Conclusion: This study provides first data on the impact of high-fidelity simulation in an undergraduate setting

    Arthroscopy or ultrasound in undergraduate anatomy education: a randomized cross-over controlled trial

    Get PDF
    Background: The exponential growth of image-based diagnostic and minimally invasive interventions requires a detailed three-dimensional anatomical knowledge and increases the demand towards the undergraduate anatomical curriculum. This randomized controlled trial investigates whether musculoskeletal ultrasound (MSUS) or arthroscopic methods can increase the anatomical knowledge uptake. Methods: Second-year medical students were randomly allocated to three groups. In addition to the compulsory dissection course, the ultrasound group (MSUS) was taught by eight, didactically and professionally trained, experienced student-teachers and the arthroscopy group (ASK) was taught by eight experienced physicians. The control group (CON) acquired the anatomical knowledge only via the dissection course. Exposure (MSUS and ASK) took place in two separate lessons (75 minutes each, shoulder and knee joint) and introduced standard scan planes using a 10-MHz ultrasound system as well as arthroscopy tutorials at a simulator combined with video tutorials. The theoretical anatomic learning outcomes were tested using a multiple-choice questionnaire (MCQ), and after cross-over an objective structured clinical examination (OSCE). Differences in student's perceptions were evaluated using Likert scale-based items. Results: The ASK-group (n = 70, age 23.4 (20--36) yrs.) performed moderately better in the anatomical MC exam in comparison to the MSUS-group (n = 84, age 24.2 (20--53) yrs.) and the CON-group (n = 88, 22.8 (20--33) yrs.; p = 0.019). After an additional arthroscopy teaching 1 % of students failed the MC exam, in contrast to 10 % in the MSUS- or CON-group, respectively. The benefit of the ASK module was limited to the shoulder area (p < 0.001). The final examination (OSCE) showed no significant differences between any of the groups with good overall performances. In the evaluation, the students certified the arthroscopic tutorial a greater advantage concerning anatomical skills with higher spatial imagination in comparison to the ultrasound tutorial (p = 0.002; p < 0.001). Conclusions: The additional implementation of arthroscopy tutorials to the dissection course during the undergraduate anatomy training is profitable and attractive to students with respect to complex joint anatomy. Simultaneous teaching of basic-skills in musculoskeletal ultrasound should be performed by medical experts, but seems to be inferior to the arthroscopic 2D-3D-transformation, and is regarded by students as more difficult to learn. Although arthroscopy and ultrasound teaching do not have a major effect on learning joint anatomy, they have the potency to raise the interest in surgery

    Addressing the challenges of ECMO simulation

    Get PDF
    This document is the Accepted Manuscript. The final, definitive version of this paper has been published in Perfusion, May 2018, published by SAGE Publishing, All rights reserved.Introduction/Aim: The patient’s condition and high-risk nature of extracorporeal membrane oxygenation (ECMO) therapy force clinical services to ensure clinicians are properly trained and always ready to deal effectively with critical situations. Simulation-based education (SBE), from the simplest approaches to the most immersive modalities, helps promote optimum individual and team performance. The risks of SBE are negative learning, inauthenticity in learning and over-reliance on the participants’ suspension of disbelief. This is especially relevant to ECMO SBE as circuit/patient interactions are difficult to fully simulate without confusing circuit alterations. Methods: Our efforts concentrate on making ECMO simulation easier and more realistic in order to reduce the current gap there is between SBE and real ECMO patient care. Issues to be overcome include controlling the circuit pressures, system failures, patient issues, blood colour and cost factors. Key to our developments are the hospital-university collaboration and research funding. Results: A prototype ECMO simulator has been developed that allows for realistic ECMO SBE. The system emulates the ECMO machine interface with remotely controllable pressure parameters, haemorrhaging, line chattering, air bubble noise and simulated blood colour change. Conclusion: The prototype simulator allows the simulation of common ECMO emergencies through innovative solutions that enhance the fidelity of ECMO SBE and reduce the requirement for suspension of disbelief from participants. Future developments will encompass the patient cannulation aspect.Peer reviewe

    Enhancing Clinical Learning Through an Innovative Instructor Application for ECMO Patient Simulators

    Get PDF
    © 2018 The Authors. Reprinted by permission of SAGE PublicationsBackground. Simulation-based learning (SBL) employs the synergy between technology and people to immerse learners in highly-realistic situations in order to achieve quality clinical education. Due to the ever-increasing popularity of extracorporeal membrane oxygenation (ECMO) SBL, there is a pressing need for a proper technological infrastructure that enables high-fidelity simulation to better train ECMO specialists to deal with related emergencies. In this article, we tackle the control aspect of the infrastructure by presenting and evaluating an innovative cloud-based instructor, simulator controller, and simulation operations specialist application that enables real-time remote control of fullscale immersive ECMO simulation experiences for ECMO specialists as well as creating custom simulation scenarios for standardized training of individual healthcare professionals or clinical teams. Aim. This article evaluates the intuitiveness, responsiveness, and convenience of the ECMO instructor application as a viable ECMO simulator control interface. Method. A questionnaire-based usability study was conducted following institutional ethical approval. Nineteen ECMO practitioners were given a live demonstration of the instructor application in the context of an ECMO simulator demonstration during which they also had the opportunity to interact with it. Participants then filled in a questionnaire to evaluate the ECMO instructor application as per intuitiveness, responsiveness, and convenience. Results. The collected feedback data confirmed that the presented application has an intuitive, responsive, and convenient ECMO simulator control interface. Conclusion. The present study provided evidence signifying that the ECMO instructor application is a viable ECMO simulator control interface. Next steps will comprise a pilot study evaluating the educational efficacy of the instructor application in the clinical context with further technical enhancements as per participants’ feedback.Peer reviewedFinal Accepted Versio

    High fidelity full sized human patient simulation manikins: Effects on decision making skills of nursing students

    Get PDF
    Background: The continued use of high fidelity full sized human patient simulation manikins (HF-HPSMs) for developing decision making skills of nursing students has led to growing research focusing its value on student learning and decision making skills. Methods: In October 2012, a cross-sectional survey using the 24-item Nurse Decision-Making Instrument was used to explore the decision making process of 232 pre-registration nursing students (age 22.0 + 5.4; 83.2% female) in Singapore. Results: The independent samples t-tests demonstrated three significant predictive indicators. These indicators include: prior experience in high fidelity simulation based on pre-enrolled nursing course (t = 70.6, p = .001), actual hands-on practice (t = 69.66, p &lt; .005) and active participation in debrief (t = 70.11, p &lt; .005). A complete experience based on role-playing followed by active discussion in debrief was a significant contributor to the decision making process (t = 73.6667, p &lt; .005). However, the regression model indicated active participation in debrief as a significant variable which explained its development (t = 12.633, p &lt; .005). Conclusions: This study demonstrated the usefulness of active participation in simulation learning for an analytic- intuitive approach to decision making, however active participation in debrief was a more important influencing element than role-playing. In situations where resources are limited for students to experience hands-on role-playing, peer reviewing and feedback on others’ experiences could benefit students, just as much. However, further study is warranted to determine the development of HF-HPSMs as a pedagogic tool for enhancing the decision making process of nursing students

    Advances in Teaching & Learning Day Abstracts 2005

    Get PDF
    Proceedings of the Advances in Teaching & Learning Day Regional Conference held at The University of Texas Health Science Center at Houston in 2005
    corecore