26,397 research outputs found

    Learning robot policies using a high-level abstraction persona-behaviour simulator

    Get PDF
    2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksCollecting data in Human-Robot Interaction for training learning agents might be a hard task to accomplish. This is especially true when the target users are older adults with dementia since this usually requires hours of interactions and puts quite a lot of workload on the user. This paper addresses the problem of importing the Personas technique from HRI to create fictional patients’ profiles. We propose a Persona-Behaviour Simulator tool that provides, with high-level abstraction, user’s actions during an HRI task, and we apply it to cognitive training exercises for older adults with dementia. It consists of a Persona Definition that characterizes a patient along four dimensions and a Task Engine that provides information regarding the task complexity. We build a simulated environment where the high-level user’s actions are provided by the simulator and the robot initial policy is learned using a Q-learning algorithm. The results show that the current simulator provides a reasonable initial policy for a defined Persona profile. Moreover, the learned robot assistance has proved to be robust to potential changes in the user’s behaviour. In this way, we can speed up the fine-tuning of the rough policy during the real interactions to tailor the assistance to the given user. We believe the presented approach can be easily extended to account for other types of HRI tasks; for example, when input data is required to train a learning algorithm, but data collection is very expensive or unfeasible. We advocate that simulation is a convenient tool in these cases.Peer ReviewedPostprint (author's final draft

    Agents for educational games and simulations

    Get PDF
    This book consists mainly of revised papers that were presented at the Agents for Educational Games and Simulation (AEGS) workshop held on May 2, 2011, as part of the Autonomous Agents and MultiAgent Systems (AAMAS) conference in Taipei, Taiwan. The 12 full papers presented were carefully reviewed and selected from various submissions. The papers are organized topical sections on middleware applications, dialogues and learning, adaption and convergence, and agent applications

    Talking Nets: A Multi-Agent Connectionist Approach to Communication and Trust between Individuals

    Get PDF
    A multi-agent connectionist model is proposed that consists of a collection of individual recurrent networks that communicate with each other, and as such is a network of networks. The individual recurrent networks simulate the process of information uptake, integration and memorization within individual agents, while the communication of beliefs and opinions between agents is propagated along connections between the individual networks. A crucial aspect in belief updating based on information from other agents is the trust in the information provided. In the model, trust is determined by the consistency with the receiving agents’ existing beliefs, and results in changes of the connections between individual networks, called trust weights. Thus activation spreading and weight change between individual networks is analogous to standard connectionist processes, although trust weights take a specific function. Specifically, they lead to a selective propagation and thus filtering out of less reliable information, and they implement Grice’s (1975) maxims of quality and quantity in communication. The unique contribution of communicative mechanisms beyond intra-personal processing of individual networks was explored in simulations of key phenomena involving persuasive communication and polarization, lexical acquisition, spreading of stereotypes and rumors, and a lack of sharing unique information in group decisions

    Annotated Bibliography: Anticipation

    Get PDF

    A Conceptual Model of Investor Behavior

    Get PDF
    Based on a survey of behavioral finance literature, this paper presents a descriptive model of individual investor behavior in which investment decisions are seen as an iterative process of interactions between the investor and the investment environment. This investment process is influenced by a number of interdependent variables and driven by dual mental systems, the interplay of which contributes to boundedly rational behavior where investors use various heuristics and may exhibit behavioral biases. In the modeling tradition of cognitive science and intelligent systems, the investor is seen as a learning, adapting, and evolving entity that perceives the environment, processes information, acts upon it, and updates his or her internal states. This conceptual model can be used to build stylized representations of (classes of) individual investors, and further studied using the paradigm of agent-based artificial financial markets. By allowing us to implement individual investor behavior, to choose various market mechanisms, and to analyze the obtained asset prices, agent-based models can bridge the gap between the micro level of individual investor behavior and the macro level of aggregate market phenomena. It has been recognized, yet not fully explored, that these models could be used as a tool to generate or test various behavioral hypothesis.behavioral finance;financial decision making;agent-based artificial financial markets;cognitive modeling;investor behavior

    Life is an Adventure! An agent-based reconciliation of narrative and scientific worldviews\ud

    Get PDF
    The scientific worldview is based on laws, which are supposed to be certain, objective, and independent of time and context. The narrative worldview found in literature, myth and religion, is based on stories, which relate the events experienced by a subject in a particular context with an uncertain outcome. This paper argues that the concept of “agent”, supported by the theories of evolution, cybernetics and complex adaptive systems, allows us to reconcile scientific and narrative perspectives. An agent follows a course of action through its environment with the aim of maximizing its fitness. Navigation along that course combines the strategies of regulation, exploitation and exploration, but needs to cope with often-unforeseen diversions. These can be positive (affordances, opportunities), negative (disturbances, dangers) or neutral (surprises). The resulting sequence of encounters and actions can be conceptualized as an adventure. Thus, the agent appears to play the role of the hero in a tale of challenge and mystery that is very similar to the "monomyth", the basic storyline that underlies all myths and fairy tales according to Campbell [1949]. This narrative dynamics is driven forward in particular by the alternation between prospect (the ability to foresee diversions) and mystery (the possibility of achieving an as yet absent prospect), two aspects of the environment that are particularly attractive to agents. This dynamics generalizes the scientific notion of a deterministic trajectory by introducing a variable “horizon of knowability”: the agent is never fully certain of its further course, but can anticipate depending on its degree of prospect
    • 

    corecore